Votre recherche
Résultats 48 ressources
-
Dynamic global vegetation models (DGVMs) typically track the material and energy cycles in ecosystems with finite plant functional types (PFTs). Increasingly, the community ecology and modelling studies recognize that current PFT scheme is not sufficient for simulating ecological processes. Recent advances in the study of plant functional traits (FTs) in community ecology provide a novel and feasible approach for the improvement of PFT-based DGVMs. This paper reviews the development of current DGVMs over recent decades. After characterizing the advantages and disadvantages of the PFT-based scheme, it summarizes trait-based theories and discusses the possibility of incorporating FTs into DGVMs. More importantly, this paper summarizes three strategies for constructing next-generation DGVMs with FTs. Finally, the method’s limitations, current challenges and future research directions for FT theory are discussed for FT theory. We strongly recommend the inclusion of several FTs, namely specific leaf area (SLA), leaf nitrogen content (LNC), carbon isotope composition of leaves (Leaf δ 13 C), the ratio between leaf-internal and ambient mole fractions of CO 2 (Leaf C i /C a ), seed mass and plant height. These are identified as the most important in constructing DGVMs based on FTs, which are also recognized as important ecological strategies for plants. The integration of FTs into dynamic vegetation models is a critical step towards improving the results of DGVM simulations; communication and cooperation among ecologists and modellers is equally important for the development of the next generation of DGVMs.
-
The spatial and temporal variation and uncertainty of precipitation and runoff in China were compared and evaluated between historical and future periods under different climate change scenarios. The precipitation pattern is derived from observed and future projected precipitation data for historical and future periods, respectively. The runoff is derived from simulation results in historical and future periods using a dynamic global vegetation model (DGVM) forced with historical observed and global climate models (GCMs) future projected climate data, respectively. One GCM (CGCM3.1) under two emission scenarios (SRES A2 and SRES B1) was used for the future period simulations. The results indicated high uncertainties and variations in climate change effects on hydrological processes in China: precipitation and runoff showed a significant increasing trend in the future period but a decreasing trend in the historical period at the national level; the temporal variation and uncertainty of projected precipitation and runoff in the future period were predicted to be higher than those in the historical period; the levels of precipitation and runoff in the future period were higher than those in the historical period. The change in trends of precipitation and runoff are highly affected by different climate change scenarios. GCM structure and emission scenarios should be the major sources of uncertainty.
-
Abstract Aim The fluctuations of atmospheric methane ( CH 4 ) that have occurred in recent decades are not fully understood, particularly with regard to the contribution from wetlands. The application of spatially explicit parameters has been suggested as an effective method for reducing uncertainties in bottom‐up approaches to wetland CH 4 emissions, but has not been included in recent studies. Our goal was to estimate spatio‐temporal patterns of global wetland CH 4 emissions using a process model and then to identify the contribution of wetland emissions to atmospheric CH 4 fluctuations. Location Global. Methods A process‐based model integrated with full descriptions of methanogenesis ( TRIPLEX‐GHG ) was used to simulate global wetland CH 4 emissions. Results Global annual wetland CH 4 emissions ranged from 209 to 245 T g CH 4 year −1 between 1901 and 2012, with peaks occurring in 1991 and 2012. There is a decreasing trend between 1990 and 2010 with a rate of approximately 0.48 T g CH 4 year −1 , which was largely caused by emissions from tropical wetlands showing a decreasing trend of 0.44 T g CH 4 year −1 since the 1970s. Emissions from tropical, temperate and high‐latitude wetlands comprised 59, 26 and 15% of global emissions, respectively. Main conclusion Global wetland CH 4 emissions, the interannual variability of which was primary controlled by tropical wetlands, partially drive the atmospheric CH 4 burden. The stable to decreasing trend in wetland CH 4 emissions, a result of a balance of emissions from tropical and extratropical wetlands, was a particular factor in slowing the atmospheric CH 4 growth rate during the 1990s. The rapid decrease in tropical wetland CH 4 emissions that began in 2000 was supposed to offset the increase in anthropogenic emissions and resulted in a relatively stable level of atmospheric CH 4 from 2000 to 2006. Increasing wetland CH 4 emissions, particularly after 2010, should be an important contributor to the growth in atmospheric CH 4 seen since 2007.
-
Alongside global warming, droughts are expected to increase in frequency, severity, and extent in the near future, which will likely result in significant impacts on forest growth, production, structure, composition, and ecosystem services. However, due to spatial and temporal characteristics, it is difficult to monitor and assess the potential effects of droughts. Remote sensing can provide an effective way to obtain real-time conditions of forests affected by drought and offer a range of spatial and temporal insights into drought-induced changes to forest ecosystem structure, function, and services. Remote sensing is rapidly developing as more satellites are launched. In situ and remotely sensed data fusion techniques have achieved notable success in assessing drought-induced damage to forests and carbon cycles. Even so, constraints still exist when using satellite data. The objectives of this review are to (1) briefly review existing data sources and methods of remote sensing; (2) synthesize current applications and contributions of remote sensing in monitoring and estimating impacts of droughts on forest ecosystems; and (3) highlight research gaps and future challenges.