Votre recherche
Résultats 68 ressources
-
Wetlands are important modulators of atmospheric greenhouse gas (GHGs) concentrations. However, little is known about the magnitudes and spatiotemporal patterns of GHGs fluxes in wetlands on the Qinghai-Tibetan Plateau (QTP), the world’s largest and highest plateau. In this study, we measured soil temperature and the fluxes of carbon dioxide (CO 2 ) and methane (CH 4 ) in an alpine wetland on the QTP from April 2017 to April 2019 by the static chamber method, and from January 2017 to December 2017 by the eddy covariance (EC) method. The CO 2 and CH 4 emission measurements from both methods showed different relationships to soil temperature at different timescales (annual and seasonal). Based on such relationship patterns and soil temperature data (1960–2017), we extrapolated the CO 2 and CH 4 emissions of study site for the past 57 years: the mean CO 2 emission rate was 91.38 mg C m –2 h –1 on different measurement methods and timescales, with the range of the mean emission rate from 35.10 to 146.25 mg C m –2 h –1 , while the mean CH 4 emission rate was 2.75 mg C m –2 h –1 , with the ranges of the mean emission rate from 1.41 to 3.85 mg C m –2 h –1 . The estimated regional CO 2 and CH 4 emissions from permanent wetlands on the QTP were 94.29 and 2.37 Tg C year –1 , respectively. These results indicate that uncertainties caused by measuring method and timescale should be fully considered when extrapolating wetland GHGs fluxes from local sites to the regional level. Moreover, the results of global warming potential showed that CO 2 dominates the GHG balance of wetlands on the QTP.
-
Abstract Increased greenhouse gas emissions are causing unprecedented climate change, which is, in turn, altering emissions and removals (referring to the oxidation of atmospheric CH 4 by methanotrophs within the soil) of the atmospheric CH 4 in terrestrial ecosystems. In the global CH 4 budget, wetlands are the dominant natural source and upland soils are the primary biological sink. However, it is unclear whether and how the soil CH 4 exchanges across terrestrial ecosystems and the atmosphere will be affected by warming and changes in precipitation patterns. Here, we synthesize 762 observations of in situ soil CH 4 flux data based on the chamber method from the past three decades related to temperature and precipitation changes across major terrestrial ecosystems worldwide. Our meta‐analysis reveals that warming (average warming of +2°C) promotes upland soil CH 4 uptake and wetland soil CH 4 emission. Decreased precipitation (ranging from −100% to −7% of local mean annual precipitation) stimulates upland soil CH 4 uptake. Increased precipitation (ranging from +4% to +94% of local mean annual precipitation) accelerates the upland soil CH 4 emission. By 2100, under the shared socioeconomic pathway with a high radiative forcing level (SSP585), CH 4 emissions from global terrestrial ecosystems will increase by 22.8 ± 3.6 Tg CH 4 yr −1 as an additional CH 4 source, which may be mainly attributed to the increase in precipitation over 30°N latitudes. Our meta‐analysis strongly suggests that future climate change would weaken the natural buffering ability of terrestrial ecosystems on CH 4 fluxes and thus contributes to a positive feedback spiral. , Plain Language Summary This study is the first investigation to include scenarios of CH 4 sink–source transition due to climate change and provides the global estimate of soil CH 4 budgets in natural terrestrial ecosystems in the context of climate change. The enhanced effect of climate change on CH 4 emissions was mainly attributed to increased CH 4 emissions from natural upland ecosystems. Although an increased CH 4 uptake by forest and grassland soils caused by increased temperature and decreased precipitation can offset some part of additional CH 4 sources, the substantial increase of increased precipitation on CH 4 emissions makes these sinks insignificant. These findings highlight that future climate change would weaken the natural buffering ability of terrestrial ecosystems on CH 4 emissions and thus form a positive feedback spiral between methane emissions and climate change. , Key Points This study is the first CH 4 budget investigation to include CH 4 sink‐source transition due to climate change Climate change is estimated to add 22.8 ± 3.6 Tg CH 4 yr −1 emission by 2100 under the high socioeconomic pathway Climate change weakens the buffering capacity of upland soils to CH 4 emissions
-
Abstract Sources of methane ( CH 4 ) become highly variable for countries undergoing a heightened period of development due to both human activity and climate change. An urgent need therefore exists to budget key sources of CH 4 , such as wetlands (rice paddies and natural wetlands) and lakes (including reservoirs and ponds), which are sensitive to these changes. For this study, references in relation to CH 4 emissions from rice paddies, natural wetlands, and lakes in C hina were first reviewed and then reestimated based on the review itself. Total emissions from the three CH 4 sources were 11.25 Tg CH 4 yr −1 (ranging from 7.98 to 15.16 Tg CH 4 yr −1 ). Among the emissions, 8.11 Tg CH 4 yr −1 (ranging from 5.20 to 11.36 Tg CH 4 yr −1 ) derived from rice paddies, 2.69 Tg CH 4 yr −1 (ranging from 2.46 to 3.20 Tg CH 4 yr −1 ) from natural wetlands, and 0.46 Tg CH 4 yr −1 (ranging from 0.33 to 0.59 Tg CH 4 yr −1 ) from lakes (including reservoirs and ponds). Plentiful water and warm conditions, as well as its large rice paddy area make rice paddies in southeastern C hina the greatest overall source of CH 4 , accounting for approximately 55% of total paddy emissions. Natural wetland estimates were slightly higher than the other estimates owing to the higher CH 4 emissions recorded within Q inghai‐ T ibetan P lateau peatlands. Total CH 4 emissions from lakes were estimated for the first time by this study, with three quarters from the littoral zone and one quarter from lake surfaces. Rice paddies, natural wetlands, and lakes are not constant sources of CH 4 , but decreasing ones influenced by anthropogenic activity and climate change. A new progress‐based model used in conjunction with more observations through model‐data fusion approach could help obtain better estimates and insights with regard to CH 4 emissions deriving from wetlands and lakes in C hina.