Votre recherche
Résultats 68 ressources
-
Dynamic global vegetation models (DGVMs) typically track the material and energy cycles in ecosystems with finite plant functional types (PFTs). Increasingly, the community ecology and modelling studies recognize that current PFT scheme is not sufficient for simulating ecological processes. Recent advances in the study of plant functional traits (FTs) in community ecology provide a novel and feasible approach for the improvement of PFT-based DGVMs. This paper reviews the development of current DGVMs over recent decades. After characterizing the advantages and disadvantages of the PFT-based scheme, it summarizes trait-based theories and discusses the possibility of incorporating FTs into DGVMs. More importantly, this paper summarizes three strategies for constructing next-generation DGVMs with FTs. Finally, the method’s limitations, current challenges and future research directions for FT theory are discussed for FT theory. We strongly recommend the inclusion of several FTs, namely specific leaf area (SLA), leaf nitrogen content (LNC), carbon isotope composition of leaves (Leaf δ 13 C), the ratio between leaf-internal and ambient mole fractions of CO 2 (Leaf C i /C a ), seed mass and plant height. These are identified as the most important in constructing DGVMs based on FTs, which are also recognized as important ecological strategies for plants. The integration of FTs into dynamic vegetation models is a critical step towards improving the results of DGVM simulations; communication and cooperation among ecologists and modellers is equally important for the development of the next generation of DGVMs.
-
Wetlands are an important natural source of methane (CH4), so it is important to quantify how their emissions may vary under future climate change conditions. The Qinghai–Tibet Plateau contains more than a third of China’s wetlands. Here, we simulated temporal and spatial variation in CH4 emissions from natural wetlands on the Qinghai–Tibet Plateau from 2008 to 2100 under Representative Concentration Pathways (RCP) 2.6, 4.5, and 8.5. Based on the simulation results of the TRIPLEX-GHG model forced with data from 24 CMIP5 models of global climate, we predict that, assuming no change in wetland distribution on the Plateau, CH4 emissions from natural wetlands will increase by 35%, 98% and 267%, respectively, under RCP 2.6, 4.5 and 8.5. The predicted increase in atmospheric CO2 concentration will contribute 10–28% to the increased CH4 emissions from wetlands on the Plateau by 2100. Emissions are predicted to be majorly in the range of 0 to 30.5 g C m−2·a−1 across the Plateau and higher from wetlands in the southern region of the Plateau than from wetlands in central or northern regions. Under RCP8.5, the methane emissions of natural wetlands on the Qinghai–Tibet Plateau increased much more significantly than that under RCP2.6 and RCP4.5.
-
Wetlands are an important natural source of methane (CH4), so it is important to quantify how their emissions may vary under future climate change conditions. The Qinghai–Tibet Plateau contains more than a third of China’s wetlands. Here, we simulated temporal and spatial variation in CH4 emissions from natural wetlands on the Qinghai–Tibet Plateau from 2008 to 2100 under Representative Concentration Pathways (RCP) 2.6, 4.5, and 8.5. Based on the simulation results of the TRIPLEX-GHG model forced with data from 24 CMIP5 models of global climate, we predict that, assuming no change in wetland distribution on the Plateau, CH4 emissions from natural wetlands will increase by 35%, 98% and 267%, respectively, under RCP 2.6, 4.5 and 8.5. The predicted increase in atmospheric CO2 concentration will contribute 10–28% to the increased CH4 emissions from wetlands on the Plateau by 2100. Emissions are predicted to be majorly in the range of 0 to 30.5 g C m−2·a−1 across the Plateau and higher from wetlands in the southern region of the Plateau than from wetlands in central or northern regions. Under RCP8.5, the methane emissions of natural wetlands on the Qinghai–Tibet Plateau increased much more significantly than that under RCP2.6 and RCP4.5.
-
The spatial and temporal variation and uncertainty of precipitation and runoff in China were compared and evaluated between historical and future periods under different climate change scenarios. The precipitation pattern is derived from observed and future projected precipitation data for historical and future periods, respectively. The runoff is derived from simulation results in historical and future periods using a dynamic global vegetation model (DGVM) forced with historical observed and global climate models (GCMs) future projected climate data, respectively. One GCM (CGCM3.1) under two emission scenarios (SRES A2 and SRES B1) was used for the future period simulations. The results indicated high uncertainties and variations in climate change effects on hydrological processes in China: precipitation and runoff showed a significant increasing trend in the future period but a decreasing trend in the historical period at the national level; the temporal variation and uncertainty of projected precipitation and runoff in the future period were predicted to be higher than those in the historical period; the levels of precipitation and runoff in the future period were higher than those in the historical period. The change in trends of precipitation and runoff are highly affected by different climate change scenarios. GCM structure and emission scenarios should be the major sources of uncertainty.
-
Tropical rainforest ecosystems are important when considering the global methane (CH4) budget and in climate change mitigation. However, there is a lack of direct and year-round observations of ecosystem-scale CH4 fluxes from tropical rainforest ecosystems. In this study, we examined the temporal variations in CH4 flux at the ecosystem scale and its annual budget and environmental controlling factors in a tropical rainforest of Hainan Island, China, using 3 years of continuous eddy covariance measurements from 2016 to 2018. Our results show that CH4 uptake generally occurred in this tropical rainforest, where strong CH4 uptake occurred in the daytime, and a weak CH4 uptake occurred at night with a mean daily CH4 flux of −4.5 nmol m−2 s−1. In this rainforest, the mean annual budget of CH4 for the 3 years was −1260 mg CH4 m−2 year−1. Furthermore, the daily averaged CH4 flux was not distinctly different between the dry season and wet season. Sixty-nine percent of the total variance in the daily CH4 flux could be explained by the artificial neural network (ANN) model, with a combination of air temperature (Tair), latent heat flux (LE), soil volumetric water content (VWC), atmospheric pressure (Pa), and soil temperature at −10 cm (Tsoil), although the linear correlation between the daily CH4 flux and any of these individual variables was relatively low. This indicates that CH4 uptake in tropical rainforests is controlled by multiple environmental factors and that their relationships are nonlinear. Our findings also suggest that tropical rainforests in China acted as a CH4 sink during 2016–2018, helping to counteract global warming.