Votre recherche
Résultats 21 ressources
-
In recent years, plastic greenhouse vegetable cultivation (PGVC) has expanded worldwide, particularly in China, where it accounts for more than 90% of all global PGVC operations. As compared with conventional agricultural methods, PGVC has doubled crop yields by extending growing seasons and intensifying agriculture. PGVC also offers more ecosystem services relative to conventional approaches, including greater soil carbon sequestration, lower water consumption, and improved soil protection at regional scales. The economic benefits of this easily implemented agricultural method are attractive to small‐holder farmers. However, greater environmental impacts (eg greenhouse‐gas emissions, generation of large amounts of plastic waste) are associated with PGVC than with conventional approaches. Here, we review what is currently known about PGVC and identify future research priorities that will comprehensively assess the ecosystem services offered by this method of cultivation, as well as its environmental impacts and socioeconomic benefits.
-
Abstract Increasing evidence indicates that current dynamic global vegetation models (DGVMs) have suffered from insufficient realism and are difficult to improve, particularly because they are built on plant functional type (PFT) schemes. Therefore, new approaches, such as plant trait-based methods, are urgently needed to replace PFT schemes when predicting the distribution of vegetation and investigating vegetation sensitivity. As an important direction towards constructing next-generation DGVMs based on plant functional traits, we propose a novel approach for modelling vegetation distributions and analysing vegetation sensitivity through trait-climate relationships in China. The results demonstrated that a Gaussian mixture model (GMM) trained with a LMA-N mass -LAI data combination yielded an accuracy of 72.82% in simulating vegetation distribution, providing more detailed parameter information regarding community structures and ecosystem functions. The new approach also performed well in analyses of vegetation sensitivity to different climatic scenarios. Although the trait-climate relationship is not the only candidate useful for predicting vegetation distributions and analysing climatic sensitivity, it sheds new light on the development of next-generation trait-based DGVMs.
-
Abstract Sources of methane ( CH 4 ) become highly variable for countries undergoing a heightened period of development due to both human activity and climate change. An urgent need therefore exists to budget key sources of CH 4 , such as wetlands (rice paddies and natural wetlands) and lakes (including reservoirs and ponds), which are sensitive to these changes. For this study, references in relation to CH 4 emissions from rice paddies, natural wetlands, and lakes in C hina were first reviewed and then reestimated based on the review itself. Total emissions from the three CH 4 sources were 11.25 Tg CH 4 yr −1 (ranging from 7.98 to 15.16 Tg CH 4 yr −1 ). Among the emissions, 8.11 Tg CH 4 yr −1 (ranging from 5.20 to 11.36 Tg CH 4 yr −1 ) derived from rice paddies, 2.69 Tg CH 4 yr −1 (ranging from 2.46 to 3.20 Tg CH 4 yr −1 ) from natural wetlands, and 0.46 Tg CH 4 yr −1 (ranging from 0.33 to 0.59 Tg CH 4 yr −1 ) from lakes (including reservoirs and ponds). Plentiful water and warm conditions, as well as its large rice paddy area make rice paddies in southeastern C hina the greatest overall source of CH 4 , accounting for approximately 55% of total paddy emissions. Natural wetland estimates were slightly higher than the other estimates owing to the higher CH 4 emissions recorded within Q inghai‐ T ibetan P lateau peatlands. Total CH 4 emissions from lakes were estimated for the first time by this study, with three quarters from the littoral zone and one quarter from lake surfaces. Rice paddies, natural wetlands, and lakes are not constant sources of CH 4 , but decreasing ones influenced by anthropogenic activity and climate change. A new progress‐based model used in conjunction with more observations through model‐data fusion approach could help obtain better estimates and insights with regard to CH 4 emissions deriving from wetlands and lakes in C hina.
-
Abstract Rising demand for ruminant meat and dairy products in developing countries is expected to double anthropogenic greenhouse gas and ammonia emissions from livestock by 2050. Mitigation strategies are urgently needed to meet demand while minimizing environmental impacts. Here, we develop scenarios for mitigating emissions under local vs global supply policies using data from 308 livestock farms across mainland China, where emissions intensities are ~50% higher than those in developed nations. Intensification of domestic production and globalized expansion through increased trade result in reductions in global emissions by nearly 30% over a business-as-usual scenario, but at the expense of trading partners absorbing the associated negative externalities of environmental degradation. Only adoption of a mixed strategy combining global best-practice in sustainable intensification of domestic production, with increased green-source trading as a short-term coping strategy, can meet 2050 demand while minimizing the local and global environmental footprint of China’s ruminant consumption boom.
-
Abstract Both anthropogenic activities and climate change can affect the biogeochemical processes of natural wetland methanogenesis. Quantifying possible impacts of changing climate and wetland area on wetland methane (CH 4 ) emissions in China is important for improving our knowledge on CH 4 budgets locally and globally. However, their respective and combined effects are uncertain. We incorporated changes in wetland area derived from remote sensing into a dynamic CH 4 model to quantify the human and climate change induced contributions to natural wetland CH 4 emissions in China over the past three decades. Here we found that human-induced wetland loss contributed 34.3% to the CH 4 emissions reduction (0.92 TgCH 4 ), and climate change contributed 20.4% to the CH 4 emissions increase (0.31 TgCH 4 ), suggesting that decreasing CH 4 emissions due to human-induced wetland reductions has offset the increasing climate-driven CH 4 emissions. With climate change only, temperature was a dominant controlling factor for wetland CH 4 emissions in the northeast (high latitude) and Qinghai-Tibet Plateau (high altitude) regions, whereas precipitation had a considerable influence in relative arid north China. The inevitable uncertainties caused by the asynchronous for different regions or periods due to inter-annual or seasonal variations among remote sensing images should be considered in the wetland CH 4 emissions estimation.
- 1
- 2