Votre recherche
Résultat 1 ressource
-
Abstract The strength and variability of the Southern Ocean carbon sink is a significant source of uncertainty in the global carbon budget. One barrier to reconciling observations and models is understanding how synoptic weather patterns modulate air-sea carbon exchange. Here, we identify and track storms using atmospheric sea level pressure fields from reanalysis data to assess the role that storms play in driving air-sea CO 2 exchange. We examine the main drivers of CO 2 fluxes under storm forcing and quantify their contribution to Southern Ocean annual air-sea CO 2 fluxes. Our analysis relies on a forced ocean-ice simulation from the Community Earth System Model, as well as CO 2 fluxes estimated from Biogeochemical Argo floats. We find that extratropical storms in the Southern Hemisphere induce CO 2 outgassing, driven by CO 2 disequilibrium. However, this effect is an order of magnitude larger in observations compared to the model and caused by different reasons. Despite large uncertainties in CO 2 fluxes and storm statistics, observations suggest a pivotal role of storms in driving Southern Ocean air-sea CO 2 outgassing that remains to be well represented in climate models, and needs to be further investigated in observations.