Votre recherche
Résultats 4 ressources
-
Abstract Large scale flood risk analyses are fundamental to many applications requiring national or international overviews of flood risk. While large‐scale climate patterns such as teleconnections and climate change become important at this scale, it remains a challenge to represent the local hydrological cycle over various watersheds in a manner that is physically consistent with climate. As a result, global models tend to suffer from a lack of available scenarios and flexibility that are key for planners, relief organizations, regulators, and the financial services industry to analyze the socioeconomic, demographic, and climatic factors affecting exposure. Here we introduce a data‐driven, global, fast, flexible, and climate‐consistent flood risk modeling framework for applications that do not necessarily require high‐resolution flood mapping. We use statistical and machine learning methods to examine the relationship between historical flood occurrence and impact from the Dartmouth Flood Observatory (1985–2017), and climatic, watershed, and socioeconomic factors for 4,734 HydroSHEDS watersheds globally. Using bias‐corrected output from the NCAR CESM Large Ensemble (1980–2020), and the fitted statistical relationships, we simulate 1 million years of events worldwide along with the population displaced in each event. We discuss potential applications of the model and present global flood hazard and risk maps. The main value of this global flood model lies in its ability to quickly simulate realistic flood events at a resolution that is useful for large‐scale socioeconomic and financial planning, yet we expect it to be useful to climate and natural hazard scientists who are interested in socioeconomic impacts of climate. , Plain Language Summary Flood is among the deadliest and most damaging natural disasters. To protect against large scale flood risk, stakeholders need to understand how floods can occur and their potential impacts. Stakeholders rely on global flood models to provide them with plausible flood scenarios around the world. For a flood model to operate at the global scale, climate effects must be represented in addition to hydrological ones to demonstrate how rivers can overflow throughout the world each year. Global flood models often lack the flexibility and variety of scenarios required by many stakeholders because they are computationally demanding. Designed for applications where detailed local flood impacts are not required, we introduce a rapid and flexible global flood model that can generate hundreds of thousands of scenarios everywhere in the world in a matter of minutes. The model is based on a historical flood database from 1985 to 2017 that is represented using an algorithm that learns from the data. With this model, the output from a global climate model is used to simulate a large sample of floods for risk analyses that are coherent with global climate. Maps of the annual average number of floods and number of displaced people illustrate the models results. , Key Points We present a global flood model built using machine learning methods fitted with historical flood occurrences and impacts Forced with a climate model, the global flood model is fast, flexible and consistent with global climate We provide global flood hazard (occurrence) and risk (population displaced) maps over 4,734 watersheds
-
Abstract Tropical cyclones (TCs) are among the most destructive natural hazards and yet, quantifying their financial impacts remains a significant methodological challenge. It is therefore of high societal value to synthetically simulate TC tracks and winds to assess potential impacts along with their probability distributions for example, land use planning and financial risk management. A common approach to generate TC tracks is to apply storm detection methodologies to climate model output, but such an approach is sensitive to the method and parameterization used and tends to underestimate intense TCs. We present a global TC model (the UQAM‐TCW model thereafter) that melds statistical modeling, to capture historical risk features, with a climate model large ensemble, to generate large samples of physically coherent TC seasons. Integrating statistical and physical methods, the model is probabilistic and consistent with the physics of how TCs develop. The model includes frequency and location of cyclogenesis, full trajectories with maximum sustained winds and the entire wind structure along each track for the six typical cyclogenesis basins from IBTrACS. Being an important driver of TCs globally, we also integrate ENSO effects in key components of the model. The global TC model thus belongs to a recent strand of literature that combines probabilistic and physical approaches to TC track generation. As an application of the model, we show global hazard maps for direct and indirect hits expressed in terms of return periods. The global TC model can be of interest to climate and environmental scientists, economists and financial risk managers. , Plain Language Summary Tropical cyclones (TCs) are among the most destructive natural hazards and yet, quantifying their financial impacts remains a difficult task. Being able to randomly simulate TCs and their features (such as wind speed) with mathematical models is therefore critical to build scenarios (and their corresponding probability) for land use planning and financial risk management. A common approach is to simulate TCs by tracking them directly in climate model outputs but this often underestimates the frequency of intense TCs while being computationally costly overall to generate a large number of events. For these reasons, many authors have looked into alternative approaches that replicate key physical features of TCs but rather using statistical models that are much less computationally demanding. This paper therefore presents a global TC model that leverages the strengths of both statistical and climate models to simulate a large number of TCs whose features are consistent with the physics and observations. As an important global phenomenon that affects TCs globally, we also integrate in our model the effects of El Niño. The paper focuses on the methodology and validation of each model component and concludes with global hazard maps for direct and indirect hits. , Key Points We present a global tropical cyclone (TC) wind model built upon a climate model large ensemble that can be used for risk analysis We integrate ENSO into our model since it is a strong driver of storm annual frequency, cyclogenesis, trajectories, and intensity We present global hazard maps consistent with statistical features of TC components and coherent with a global climate model
-
Abstract. Large-scale socioeconomic studies of the impacts of floods are difficult and costly for countries such as Canada and the United States due to the large number of rivers and size of watersheds. Such studies are however very important for analyzing spatial patterns and temporal trends to inform large-scale flood risk management decisions and policies. In this paper, we present different flood occurrence and impact models based upon statistical and machine learning methods of over 31 000 watersheds spread across Canada and the US. The models can be quickly calibrated and thereby easily run predictions over thousands of scenarios in a matter of minutes. As applications of the models, we present the geographical distribution of the modelled average annual number of people displaced due to flooding in Canada and the US, as well as various scenario analyses. We find for example that an increase of 10 % in average precipitation yields an increase in the displaced population of 18 % in Canada and 14 % in the US. The model can therefore be used by a broad range of end users ranging from climate scientists to economists who seek to translate climate and socioeconomic scenarios into flood probabilities and impacts measured in terms of the displaced population.
-
Abstract There is mounting pressure on (re)insurers to quantify the impacts of climate change, notably on the frequency and severity of claims due to weather events such as flooding. This is however a very challenging task for (re)insurers as it requires modeling at the scale of a portfolio and at a high enough spatial resolution to incorporate local climate change effects. In this paper, we introduce a data science approach to climate change risk assessment of pluvial flooding for insurance portfolios over Canada and the United States (US). The underlying flood occurrence model quantifies the financial impacts of short-term (12–48 h) precipitation dynamics over the present (2010–2030) and future climate (2040–2060) by leveraging statistical/machine learning and regional climate models. The flood occurrence model is designed for applications that do not require street-level precision as is often the case for scenario and trend analyses. It is applied at the full scale of Canada and the US over 10–25 km grids. Our analyses show that climate change and urbanization will typically increase losses over Canada and the US, while impacts are strongly heterogeneous from one state or province to another, or even within a territory. Portfolio applications highlight the importance for a (re)insurer to differentiate between future changes in hazard and exposure, as the latter may magnify or attenuate the impacts of climate change on losses.