Votre recherche
Résultats 2 ressources
-
Machine learning, an important branch of artificial intelligence, is increasingly being applied in sciences such as forest ecology. Here, we review and discuss three commonly used methods of machine learning (ML) including decision-tree learning, artificial neural network, and support vector machine and their applications in four different aspects of forest ecology over the last decade. These applications include: (i) species distribution models, (ii) carbon cycles, (iii) hazard assessment and prediction, and (iv) other applications in forest management. Although ML approaches are useful for classification, modeling, and prediction in forest ecology research, further expansion of ML technologies is limited by the lack of suitable data and the relatively “higher threshold” of applications. However, the combined use of multiple algorithms and improved communication and cooperation between ecological researchers and ML developers still present major challenges and tasks for the betterment of future ecological research. We suggest that future applications of ML in ecology will become an increasingly attractive tool for ecologists in the face of “big data” and that ecologists will gain access to more types of data such as sound and video in the near future, possibly opening new avenues of research in forest ecology.
-
The spruce budworm (SBW) defoliates and kills conifer trees, consequently affecting carbon (C) exchanges between the land and atmosphere. Here, we developed a new TRIPLEX-Insect sub-model to quantify the impacts of insect outbreaks on forest C fluxes. We modeled annual defoliation (AD), cumulative defoliation (CD), and tree mortality. The model was validated against observed and published data at the stand level in the North Shore region of Québec and Cape Breton Island in Nova Scotia, Canada. The results suggest that TRIPLEX-Insect performs very well in capturing tree mortality following SBW outbreaks and slightly underestimates current annual volume increment (CAI). In both mature and immature forests, the simulation model suggests a larger reduction in gross primary productivity (GPP) than in autotrophic respiration (Ra) at the same defoliation level when tree mortality was low. After an SBW outbreak, the growth release of surviving trees contributes to the recovery of annual net ecosystem productivity (NEP) based on forest age if mortality is not excessive. Overall, the TRIPLEX-Insect model is capable of simulating C dynamics of balsam fir following SBW disturbances and can be used as an efficient tool in forest insect management.