Votre recherche
Résultats 2 ressources
-
Abstract. We use a high-resolution regional climate model to investigate the changes in Atlantic tropical cyclone (TC) activity during the period of the mid-Holocene (MH: 6000 years BP) with a larger amplitude of the seasonal cycle relative to today. This period was characterized by increased boreal summer insolation over the Northern Hemisphere, a vegetated Sahara and reduced airborne dust concentrations. A set of sensitivity experiments was conducted in which solar insolation, vegetation and dust concentrations were changed in turn to disentangle their impacts on TC activity in the Atlantic Ocean. Results show that the greening of the Sahara and reduced dust loadings (MHGS+RD) lead to a larger increase in the number of Atlantic TCs (27 %) relative to the pre-industrial (PI) climate than the orbital forcing alone (MHPMIP; 9 %). The TC seasonality is also highly modified in the MH climate, showing a decrease in TC activity during the beginning of the hurricane season (June to August), with a shift of its maximum towards October and November in the MHGS+RD experiment relative to PI. MH experiments simulate stronger hurricanes compared to PI, similar to future projections. Moreover, they suggest longer-lasting cyclones relative to PI. Our results also show that changes in the African easterly waves are not relevant in altering the frequency and intensity of TCs, but they may shift the location of their genesis. This work highlights the importance of considering vegetation and dust changes over the Sahara region when investigating TC activity under a different climate state.
-
Storms are the most significant meteorological phenomena that affect the formation of coasts and human livelihood along them. Thus, risks related to coastal storms, such as flooding, loss of land, shipping, and other offshore activity, have had a significant influence on coastal societies and their economies. In the early 21st century, anthropogenic climate change will affect the locations and intensities of coastal storminess, impacting society. Storms are studied not only by natural scientists but also by social scientists. The former deal with the climatologies, dynamics, and mechanisms of storms but also with the identification of different types of storms, such as extratropical baroclinic storms, explosive cyclones, tropical storms, polar lows, medicanes, Vb-cyclones, and Australian east coast storms. Their significance is often through their physical impacts, in particular ocean waves and storm surges, which were and are associated with massive losses of lives, sometimes up to several hundred thousand people, and wealth. The perceptions of what storms constitute were different in different cultural contexts and times. In earlier days, higher forces were responsible for such storms, which they used to transfer messages to humans, physically based ideas have been forming since the 16th century. Another significant historical development was societies preparing to reduce their vulnerability to storms and to implement practices of insurance and risk management.