Votre recherche
Résultats 4 ressources
-
Palynological and sedimentological analyses were performed on the sediment core HH16‐1205‐GC retrieved from the central Isfjorden, West Spitsbergen. The sequence, which spans the last 7000 years, revealed an overall cooling trend with an important climate shift between 4.4 and 3.8 cal. ka BP, in addition to millennial‐scale oscillations. Sea‐surface reconstruction from dinocyst assemblages indicates a decrease in summer sea‐surface temperature, from 2.5 to 1.5 °C, and primary productivity, from 750 to 650 gC m −2 a −1 over the last 7000 years. From around 6.8 to 5.8 cal. ka BP, the sedimentological and palynological data suggest a predominant sediment supply from the inner part of the fjord, ice rafting, dense sea ice cover, strongly stratified water masses and high primary productivity. The interval from 4.4 to 3.8 cal. ka BP is marked by a layer of coarser material and a significant decrease in the grain‐size mode. Our geochemical data show large‐amplitude fluctuations after 2.0 cal. ka BP, while an increase in the dinocysts Impagidinium pallidum and Spiniferites elongatus from 2.0 to 1.2 cal. ka BP suggests enhanced Atlantic Water inflow. The dinocyst‐based reconstructions also reveal large‐amplitude millennial fluctuations in sea ice cover, summer sea‐surface temperature and salinity. Wavelet analysis and cross‐wavelet analysis on K/Ti ratio coupled with sea‐ice estimates confirm a strong signal with a periodicity of 1200–1500 years.
-
Abstract Postglacial changes in sea-surface conditions, including sea-ice cover, summer temperature, salinity, and productivity were reconstructed from the analyses of dinocyst assemblages in core S2528 collected in the northwestern Barents Sea. The results show glaciomarine-type conditions until about 11,300 ± 300 cal yr BP and limited influence of Atlantic water at the surface into the Barents Sea possibly due to the proximity of the Svalbard-Barents Sea ice sheet. This was followed by a transitional period generally characterized by cold conditions with dense sea-ice cover and low-salinity pulses likely related to episodic freshwater or meltwater discharge, which lasted until 8700 ± 700 cal yr BP. The onset of “interglacial” conditions in surface waters was marked by a major change in dinocyst assemblages, from dominant heterotrophic to dominant phototrophic taxa. Until 4100 ± 150 cal yr BP, however, sea-surface conditions remained cold, while sea-surface salinity and sea-ice cover recorded large amplitude variations. By ~4000 cal yr BP optimum sea-surface temperature of up to 4°C in summer and maximum salinity of ~34 psu suggest enhanced influence of Atlantic water, and productivity reached up to 150 gC/m 2 /yr. After 2200 ± 1300 cal yr BP, a distinct cooling trend accompanied by sea-ice spreading characterized surface waters. Hence, during the Holocene, with exception of an interval spanning about 4000 to 2000 cal yr BP, the northern Barents Sea experienced harsh environments, relatively low productivity, and unstable conditions probably unsuitable for human settlements.
-
Abstract The Barents Sea offers a suitable location for documenting advection of warm and saline Atlantic Water (AW) into the Arctic and its impact on deglaciation and postglacial conditions. We investigate the timing, succession, and mechanisms of the transition from proximal glaciomarine to marine environment in the northwestern Barents Sea. Two studied sediment cores demonstrate diachronous retreat of the grounded ice sheet from the Kvitøya Trough (core S2528) to Erik Eriksen Trough (core S2519). Oxygen isotope records from core S2528 depict a two-step pattern, with lower δ 18 O values prior to the Younger Dryas (YD), and higher values afterward because of advection of the more saline, 18 O-enriched AW. At this location, subsurface AW penetration increased during the Allerød and YD/Preboreal transition. In the study area, foraminiferal and dinocyst data from the YD interval suggest cold conditions, extensive sea-ice cover, and brine formation, along with the flow of chilled AW at subsurface and the development of a high-productivity polynya in the Erik Eriksen Trough. Dense winter sea-ice cover with seasonal productivity persisted in the Kvitøya Trough area during the early Holocene, whereas surface warming seems to have occurred during the middle Holocene interval.
-
Significance Arctic sea ice is an important component of the Earth’s climate system, but prior to its recent reduction, its long-term natural instabilities need to be better documented. In this study, information on past sea-ice conditions across the Arctic Ocean demonstrates that whereas its western and central parts remained occupied by perennial sea ice throughout the present interglacial, its southeastern sector close to the Russian margin experienced, at least, sporadic seasonal sea-ice-free conditions during the warmer part of the present interglacial until ∼4,000 y ago. Sea-ice-free conditions during summer in the southeastern Arctic Ocean seem, therefore, to be a recurrent feature linked to its natural variability during warm episodes of the past. , The impact of the ongoing anthropogenic warming on the Arctic Ocean sea ice is ascertained and closely monitored. However, its long-term fate remains an open question as its natural variability on centennial to millennial timescales is not well documented. Here, we use marine sedimentary records to reconstruct Arctic sea-ice fluctuations. Cores collected along the Lomonosov Ridge that extends across the Arctic Ocean from northern Greenland to the Laptev Sea were radiocarbon dated and analyzed for their micropaleontological and palynological contents, both bearing information on the past sea-ice cover. Results demonstrate that multiyear pack ice remained a robust feature of the western and central Lomonosov Ridge and that perennial sea ice remained present throughout the present interglacial, even during the climate optimum of the middle Holocene that globally peaked ∼6,500 y ago. In contradistinction, the southeastern Lomonosov Ridge area experienced seasonally sea-ice-free conditions, at least, sporadically, until about 4,000 y ago. They were marked by relatively high phytoplanktonic productivity and organic carbon fluxes at the seafloor resulting in low biogenic carbonate preservation. These results point to contrasted west–east surface ocean conditions in the Arctic Ocean, not unlike those of the Arctic dipole linked to the recent loss of Arctic sea ice. Hence, our data suggest that seasonally ice-free conditions in the southeastern Arctic Ocean with a dominant Arctic dipolar pattern, may be a recurrent feature under “warm world” climate.