Votre recherche
Résultats 34 ressources
-
Abstract. Large-scale socioeconomic studies of the impacts of floods are difficult and costly for countries such as Canada and the United States due to the large number of rivers and size of watersheds. Such studies are however very important for analyzing spatial patterns and temporal trends to inform large-scale flood risk management decisions and policies. In this paper, we present different flood occurrence and impact models based upon statistical and machine learning methods of over 31 000 watersheds spread across Canada and the US. The models can be quickly calibrated and thereby easily run predictions over thousands of scenarios in a matter of minutes. As applications of the models, we present the geographical distribution of the modelled average annual number of people displaced due to flooding in Canada and the US, as well as various scenario analyses. We find for example that an increase of 10 % in average precipitation yields an increase in the displaced population of 18 % in Canada and 14 % in the US. The model can therefore be used by a broad range of end users ranging from climate scientists to economists who seek to translate climate and socioeconomic scenarios into flood probabilities and impacts measured in terms of the displaced population.
-
Abstract There is mounting pressure on (re)insurers to quantify the impacts of climate change, notably on the frequency and severity of claims due to weather events such as flooding. This is however a very challenging task for (re)insurers as it requires modeling at the scale of a portfolio and at a high enough spatial resolution to incorporate local climate change effects. In this paper, we introduce a data science approach to climate change risk assessment of pluvial flooding for insurance portfolios over Canada and the United States (US). The underlying flood occurrence model quantifies the financial impacts of short-term (12–48 h) precipitation dynamics over the present (2010–2030) and future climate (2040–2060) by leveraging statistical/machine learning and regional climate models. The flood occurrence model is designed for applications that do not require street-level precision as is often the case for scenario and trend analyses. It is applied at the full scale of Canada and the US over 10–25 km grids. Our analyses show that climate change and urbanization will typically increase losses over Canada and the US, while impacts are strongly heterogeneous from one state or province to another, or even within a territory. Portfolio applications highlight the importance for a (re)insurer to differentiate between future changes in hazard and exposure, as the latter may magnify or attenuate the impacts of climate change on losses.
-
Flood-related losses are on the rise in Canada and private insurance remains costly or unavailable in high-risk areas. Despite the introduction of overland flood insurance in 2015, following the federal government’s invitation to the insurance industry to participate in flood risk-sharing, federal and provincial disaster financial assistance programs still cover a large portion of these costs. As the risks increase, governments are questioning the sustainability of using taxpayers’ money to finance such losses, leaving municipalities with significant residual risk. The growing number of people and assets occupying flood-prone areas, including public infrastructure, has contributed to the sharp increase in flood damage costs. Based on a literature review and discussions with experts, this paper describes the municipal role in flood-risk management, and shows how provincial and federal financial assistance to municipalities for flood damage in British Columbia and Québec may be counterproductive in fostering flood-risk management at the municipal level. We conclude that municipalities can play a more proactive role in incorporating risk reduction as the key objective of disaster financial assistance and propose three specific policy instruments to help reduce the growing number of people living in flood zones: flood mapping, land-use planning, and the relocation of high-risk properties.
-
Abstract A global tropical cyclone precipitation dataset covering the period from January 1979 to February 2023 is presented. Global precipitation estimates were taken from the newly developed high-resolution Multi-Source Weighted-Ensemble Precipitation, version 2 (MSWEP V2) and TC tracks were obtained from the International Best Track Archive for Climate Stewardship (IBTrACS) dataset. This Global Multi-Source Tropical Cyclone Precipitation (MSTCP) dataset is comprised of two main products and files in the format of tables: the main and profile datasets. The main file provides various TCP statistics per TC track, including mean and maximum precipitation rates over a fixed and symmetrical radius of 500 km. The profile dataset comprises the azimuthally averaged precipitation every 10-km away from the center of each storm (until 500 km). The case study of Hurricane Harvey is used to show that MSWEP estimates agree well with another commonly used satellite product. The main statistics of the dataset are analyzed as well, including the differences in the dataset metrics for each of the six TC basins and for each Saffir-Simpson category for storm intensity.
-
Abstract We analyze, using Poisson regressions, the main climate influences on North Atlantic tropical cyclone activity. The analysis is performed using not only various time series of basin‐wide storm counts but also various series of regional clusters, taking into account shortcomings of the hurricane database through estimates of missing storms. The analysis confirms that tropical cyclones forming in different regions of the Atlantic are susceptible to different climate influences. We also investigate the presence of trends in these various time series, both at the basin‐wide and cluster levels, and show that, even after accounting for possible missing storms, there remains an upward trend in the eastern part of the basin and a downward trend in the western part. Using model selection algorithms, we show that the best model of Atlantic tropical cyclone activity for the recent past is constructed using Atlantic sea surface temperature and upper tropospheric temperature, while for the 1878–2015 period, the chosen covariates are Atlantic sea surface temperature and El Niño–Southern Oscillation. We also note that the presence of these artificial trends can impact the selection of the best covariates. If the underlying series shows an upward trend, then the mean Atlantic sea surface temperature captures both interannual variability and the upward trend, artificial or not. The relative sea surface temperature is chosen instead for stationary counts. Finally, we show that the predictive capability of the statistical models investigated is low for U.S. landfalling hurricanes but can be considerably improved when forecasting combinations of clusters whose hurricanes are most likely to make landfall. , Key Points Estimates of missing storms are not sufficient to account for the increase in hurricane activity in the eastern tropical Atlantic Recent upward trends, artificial or not, affect the selection of key determinants of tropical cyclone activity, especially the SST variable Despite previous results to that effect, the May–June NAO does not provide predictive skill for Atlantic landfalling hurricanes
-
Abstract Variability in tropical cyclone activity in the eastern Pacific basin has been linked to a wide range of climate factors, yet the dominant factors driving this variability have yet to be identified. Using Poisson regressions and a track clustering method, the authors analyze and compare the climate influence on cyclone activity in this region. The authors show that local sea surface temperature and upper-ocean heat content as well as large-scale conditions in the northern Atlantic are the dominant influence in modulating eastern North Pacific tropical cyclone activity. The results also support previous findings suggesting that the influence of the Atlantic Ocean occurs through changes in dynamical conditions over the eastern Pacific. Using model selection algorithms, the authors then proceed to construct a statistical model of eastern Pacific tropical cyclone activity. The various model selection techniques used agree in selecting one predictor from the Atlantic (northern North Atlantic sea surface temperature) and one predictor from the Pacific (relative sea surface temperature) to represent the best possible model. Finally, we show that this simple model could have predicted the anomalously high level of activity observed in 2014.
-
Abstract Tropical cyclones (TCs) are among the most destructive natural hazards and yet, quantifying their financial impacts remains a significant methodological challenge. It is therefore of high societal value to synthetically simulate TC tracks and winds to assess potential impacts along with their probability distributions for example, land use planning and financial risk management. A common approach to generate TC tracks is to apply storm detection methodologies to climate model output, but such an approach is sensitive to the method and parameterization used and tends to underestimate intense TCs. We present a global TC model (the UQAM‐TCW model thereafter) that melds statistical modeling, to capture historical risk features, with a climate model large ensemble, to generate large samples of physically coherent TC seasons. Integrating statistical and physical methods, the model is probabilistic and consistent with the physics of how TCs develop. The model includes frequency and location of cyclogenesis, full trajectories with maximum sustained winds and the entire wind structure along each track for the six typical cyclogenesis basins from IBTrACS. Being an important driver of TCs globally, we also integrate ENSO effects in key components of the model. The global TC model thus belongs to a recent strand of literature that combines probabilistic and physical approaches to TC track generation. As an application of the model, we show global hazard maps for direct and indirect hits expressed in terms of return periods. The global TC model can be of interest to climate and environmental scientists, economists and financial risk managers. , Plain Language Summary Tropical cyclones (TCs) are among the most destructive natural hazards and yet, quantifying their financial impacts remains a difficult task. Being able to randomly simulate TCs and their features (such as wind speed) with mathematical models is therefore critical to build scenarios (and their corresponding probability) for land use planning and financial risk management. A common approach is to simulate TCs by tracking them directly in climate model outputs but this often underestimates the frequency of intense TCs while being computationally costly overall to generate a large number of events. For these reasons, many authors have looked into alternative approaches that replicate key physical features of TCs but rather using statistical models that are much less computationally demanding. This paper therefore presents a global TC model that leverages the strengths of both statistical and climate models to simulate a large number of TCs whose features are consistent with the physics and observations. As an important global phenomenon that affects TCs globally, we also integrate in our model the effects of El Niño. The paper focuses on the methodology and validation of each model component and concludes with global hazard maps for direct and indirect hits. , Key Points We present a global tropical cyclone (TC) wind model built upon a climate model large ensemble that can be used for risk analysis We integrate ENSO into our model since it is a strong driver of storm annual frequency, cyclogenesis, trajectories, and intensity We present global hazard maps consistent with statistical features of TC components and coherent with a global climate model
-
Abstract We develop a portfolio credit risk model that includes firm‐specific Markov‐switching regimes as well as individual stochastic and endogenous recovery rates. Using weekly credit default swap premiums for 35 financial firms, we analyze the credit risk of each of these companies and their statistical linkages, putting emphasis on the 2005–2012 period. Moreover, we study the systemic risk affecting both the banking and insurance subsectors.
- 1
- 2