Votre recherche
Résultats 34 ressources
-
Abstract This study presents a firm‐specific methodology for extracting implied default intensities and recovery rates jointly from unit recovery claim prices—backed by out‐of‐the‐money put options—and credit default swap premiums, therefore providing time‐varying and market‐consistent views of credit risk at the individual level. We apply the procedure to about 400 firms spanning different sectors of the US economy between 2003 and 2019. The main determinants of default intensities and recovery rates are analyzed with statistical and machine learning methods linking default risk and credit losses to market, sector, and individual variables. Consistent with the literature, we find that individual volatility, leverage, and corporate bond market determinants are key factors explaining the implied default intensities and recovery rates. Then, we apply the framework in the context of credit risk management in applications, like, market‐consistent credit value‐at‐risk calculation and stress testing.
-
Abstract We investigate the behaviour of the maximum likelihood estimator (MLE) for stochastic volatility jump-diffusion models commonly used in financial risk management. A simulation study shows the practical conditions under which the MLE behaves according to theory. In an extensive empirical study based on nine indices and more than 6000 individual stocks, we nonetheless find that the MLE is unable to replicate key higher moments. We then introduce a moment-targeted MLE – robust to model misspecification – and revisit both simulation and empirical studies. We find it performs better than the MLE, improving the management of financial risk.
-
Abstract Large scale flood risk analyses are fundamental to many applications requiring national or international overviews of flood risk. While large‐scale climate patterns such as teleconnections and climate change become important at this scale, it remains a challenge to represent the local hydrological cycle over various watersheds in a manner that is physically consistent with climate. As a result, global models tend to suffer from a lack of available scenarios and flexibility that are key for planners, relief organizations, regulators, and the financial services industry to analyze the socioeconomic, demographic, and climatic factors affecting exposure. Here we introduce a data‐driven, global, fast, flexible, and climate‐consistent flood risk modeling framework for applications that do not necessarily require high‐resolution flood mapping. We use statistical and machine learning methods to examine the relationship between historical flood occurrence and impact from the Dartmouth Flood Observatory (1985–2017), and climatic, watershed, and socioeconomic factors for 4,734 HydroSHEDS watersheds globally. Using bias‐corrected output from the NCAR CESM Large Ensemble (1980–2020), and the fitted statistical relationships, we simulate 1 million years of events worldwide along with the population displaced in each event. We discuss potential applications of the model and present global flood hazard and risk maps. The main value of this global flood model lies in its ability to quickly simulate realistic flood events at a resolution that is useful for large‐scale socioeconomic and financial planning, yet we expect it to be useful to climate and natural hazard scientists who are interested in socioeconomic impacts of climate. , Plain Language Summary Flood is among the deadliest and most damaging natural disasters. To protect against large scale flood risk, stakeholders need to understand how floods can occur and their potential impacts. Stakeholders rely on global flood models to provide them with plausible flood scenarios around the world. For a flood model to operate at the global scale, climate effects must be represented in addition to hydrological ones to demonstrate how rivers can overflow throughout the world each year. Global flood models often lack the flexibility and variety of scenarios required by many stakeholders because they are computationally demanding. Designed for applications where detailed local flood impacts are not required, we introduce a rapid and flexible global flood model that can generate hundreds of thousands of scenarios everywhere in the world in a matter of minutes. The model is based on a historical flood database from 1985 to 2017 that is represented using an algorithm that learns from the data. With this model, the output from a global climate model is used to simulate a large sample of floods for risk analyses that are coherent with global climate. Maps of the annual average number of floods and number of displaced people illustrate the models results. , Key Points We present a global flood model built using machine learning methods fitted with historical flood occurrences and impacts Forced with a climate model, the global flood model is fast, flexible and consistent with global climate We provide global flood hazard (occurrence) and risk (population displaced) maps over 4,734 watersheds
-
Après les nombreuses crues printanières qui ont affecté le sud du Québec depuis 2011, le gouvernement du Québec a annoncé en avril 2019 une refonte importante de son programme d’aide financière aux sinistrés. Le programme introduit désormais une couverture limitée à vie de 100 000 $ pour les inondations successives, une mesure unique au Canada. L’objectif de cet article est d’analyser le coût des inondations successives et les impacts financiers de cette limite de couverture pour les ménages.
-
Although the finance literature has devoted a lot of research into the development of advanced models for improving the pricing and hedging performance, there has been much less emphasis on approaches to measure dynamic hedging effectiveness. This article discusses a statistical framework based on regression analysis to measure the effectiveness of dynamic hedges for long-term investment guarantees. The importance of taking model risk into account is emphasized. The difficulties in reducing hedging risk to an appropriately low level lead us to propose a new perspective on hedging, and recognize it as a tool to modify the risk–reward relationship of the unhedged position.
-
Abstract. Canada's RADARSAT missions improve the potential to study past flood events; however, existing tools to derive flood depths from this remote-sensing data do not correct for errors, leading to poor estimates. To provide more accurate gridded depth estimates of historical flooding, a new tool is proposed that integrates Height Above Nearest Drainage and Cost Allocation algorithms. This tool is tested against two trusted, hydraulically derived, gridded depths of recent floods in Canada. This validation shows the proposed tool outperforms existing tools and can provide more accurate estimates from minimal data without the need for complex physics-based models or expert judgement. With improvements in remote-sensing data, the tool proposed here can provide flood researchers and emergency managers accurate depths in near-real time.
- 1
- 2