Votre recherche
Résultats 9 ressources
-
Abstract Several far‐infrared (FIR) satellite missions are planned for the next decade, with a special interest for the Arctic region. A theoretical study is performed to help with the design of an FIR radiometer, whose configuration in terms of channels number and frequencies is optimized based on information content analysis. The problem is cast in a context of vertical column experiments (1D) to determine the optimal configuration of a FIR radiometer to study the Arctic polar night. If only observations of the FIR radiometer were assimilated, the results show that for humidity, 90% of the total information content is obtained with four bands, whereas for temperature, 10 bands are needed. When the FIR measurements are assimilated on top of those from the advanced infrared sounder (AIRS), the former bring in additional information between the surface and 850 hPa and from 550 to 250 hPa for humidity. Moreover, between 400 and 200 hPa, the FIR radiometer is better than AIRS at reducing the analysis error variance for humidity. This indicates the potential of FIR observations for improving water vapor analysis in the Arctic. , Key Points FIR channels add information for UTLS water vapor compared to standard MIR channels IC is used to optimize the channels frequencies and widths of a FIR radiometer A high DFS is reached with only a few channels of an optimized FIR radiometer
-
Polar clouds are, as a consequence of the paucity of in situ observations, poorly understood compared to their lower latitude analogs, yet highly climate-sensitive through thermal radiation emission. The prevalence of Thin Ice Clouds (TIC) dominates in cold Polar Regions and the Upper Troposphere Lower Stratosphere (UTLS) altitudes. They can be grouped into 2 broad categories. The first thin ice cloud type (TIC1) is made up of high concentrations of small, non-precipitating ice crystals. The second type (TIC2) is composed of relatively small concentrations of larger, precipitating ice crystals. In this study, we investigate the ability of a developmental version of the Canadian Regional Climate Model (CRCM6) in simulating cold polar-night clouds over the Arctic Ocean, a remote region that is critical to atmospheric circulation reaching out to the mid-latitudes. The results show that, relative to CloudSat-CALIPSO vertical profile products, CRCM6 simulates high-latitude and low spatial frequency variations of Ice Water Content (IWC), effective radius (re) and cooling rates reasonably well with only small to moderate wet and dry biases. The model can also simulate cloud type, location, and temporal occurrence effectively. As well, it successfully simulated higher altitude TIC1 clouds whose small size evaded CloudSat detection while being visible to CALIPSO.
-
Abstract. Starphotometry, the night-time counterpart of sunphotometry, has not yet achieved the commonly sought observational error level of 1 %: a spectral optical depth (OD) error level of 0.01. In order to address this issue, we investigate a large variety of systematic (absolute) uncertainty sources. The bright-star catalogue of extraterrestrial references is noted as a major source of errors with an attendant recommendation that its accuracy, particularly its spectral photometric variability, be significantly improved. The small field of view (FOV) employed in starphotometry ensures that it, unlike sun- or moonphotometry, is only weakly dependent on the intrinsic and artificial OD reduction induced by scattering into the FOV by optically thin clouds. A FOV of 45 arcsec (arcseconds) was found to be the best trade-off for minimizing such forward-scattering errors concurrently with flux loss through vignetting. The importance of monitoring the sky background and using interpolation techniques to avoid spikes and to compensate for measurement delay was underscored. A set of 20 channels was identified to mitigate contamination errors associated with stellar and terrestrial atmospheric gas absorptions, as well as aurora and airglow emissions. We also note that observations made with starphotometers similar to our High Arctic instrument should be made at high angular elevations (i.e. at air masses less than 5). We noted the significant effects of snow crystal deposition on the starphotometer optics, how pseudo OD increases associated with this type of contamination could be detected, and how proactive techniques could be employed to avoid their occurrence in the first place. If all of these recommendations are followed, one may aspire to achieve component errors that are well below 0.01: in the process, one may attain a total 0.01 OD target error.
-
Abstract. In the Arctic, during polar night and early spring, ice clouds are separated into two leading types of ice clouds (TICs): (1) TIC1 clouds characterized by a large concentration of very small crystals and TIC2 clouds characterized by a low concentration of large ice crystals. Using a suitable parameterization of heterogeneous ice nucleation is essential for properly representing ice clouds in meteorological and climate models and subsequently understanding their interactions with aerosols and radiation. Here, we describe a new parameterization for ice crystal formation by heterogeneous nucleation in water-subsaturated conditions coupled to aerosol chemistry in the Weather Research and Forecasting model coupled with chemistry (WRF-Chem). The parameterization is implemented in the Milbrandt and Yau (2005a, b) two-moment cloud microphysics scheme, and we assess how the WRF-Chem model responds to the run-time interaction between chemistry and the new parameterization. Well-documented reference cases provided us with in situ data from the spring 2008 Indirect and Semi-Direct Aerosol Campaign (ISDAC) over Alaska. Our analysis reveals that the new parameterization clearly improves the representation of the ice water content (IWC) in polluted or unpolluted air masses and shows the poor performance of the reference parameterization in representing ice clouds with low IWC. The new parameterization is able to represent TIC1 and TIC2 microphysical characteristics at the top of the clouds, where heterogenous ice nucleation is most likely occurring, even with the known bias of simulated aerosols by WRF-Chem over the Arctic.
-
Aerosol–cloud interactions present a large source of uncertainties in atmospheric and climate models. One of the main challenges to simulate ice clouds is to reproduce the right ice nucleating particle concentration. In this study, we derive a parameterization for immersion freezing according to the classical nucleation theory. Our objective was to constrain this parameterization with observations taken over the Canadian Arctic during the Amundsen summer 2014 and 2016 campaigns. We found a linear dependence of contact angle and temperature. Using this approach, we were able to reproduce the scatter in ice nucleated particle concentrations within a factor 5 of observed values with a small negative bias. This parameterization would be easy to implement in climate and atmospheric models, but its representativeness has to first be validated against other datasets.
-
Abstract The increasing atmospheric nitrous oxide (N 2 O) concentration stems from the development of agriculture. However, N 2 O emissions from global rice‐based ecosystems have not been explicitly and systematically quantified. Therefore, this study aims to estimate the spatiotemporal magnitudes of the N 2 O emissions from global rice‐based ecosystems and determine different contribution factors by improving a process‐based biogeochemical model, TRIPLEX‐GHG v2.0. Model validation suggested that the modeled N 2 O agreed well with field observations under varying management practices at daily, seasonal, and annual steps. Simulated N 2 O emissions from global rice‐based ecosystems exhibited significant increasing trends from 0.026 ± 0.0013 to 0.18 ± 0.003 TgN yr −1 from 1910 to 2020, with ∼69.5% emissions attributed to the rice‐growing seasons. Irrigated rice ecosystems accounted for a majority of global rice N 2 O emissions (∼76.9%) because of their higher N 2 O emission rates than rainfed systems. Regarding spatial analysis, Southern China, Northeast India, and Southeast Asia are hotspots for rice‐based N 2 O emissions. Experimental scenarios revealed that N fertilizer is the largest global rice‐N 2 O source, especially since the 1960s (0.047 ± 0.010 TgN yr −1 , 35.24%), while the impact of expanded irrigation plays a minor role. Overall, this study provides a better understanding of the rice‐based ecosystem in the global agricultural N 2 O budget; further, it quantitively demonstrated the central role of N fertilizer in rice‐based N 2 O emissions by including rice crop calendars, covering non‐rice growing seasons, and differentiating the effects of various water regimes and input N forms. Our findings emphasize the significance of co‐management of N fertilizer and water regimes in reducing the net climate impact of global rice cultivation. , Plain Language Summary Nitrous oxide (N 2 O) is a greenhouse gas with ∼300 times greater effect on climate warming than carbon dioxide. Global croplands represent the largest source of anthropogenic N 2 O emissions. However, the contribution of global rice‐based cropping ecosystems to the N 2 O budget remains largely uncertain because of inconsistent observed results. Inspired by the increasing availability of reliable global data sets, we improved and applied a process‐based biogeochemical model by describing the dynamics of various microbial activities to simulate N 2 O emissions from rice‐based ecosystems on a global scale. Model simulations showed that 0.18 million tons of N 2 O‐N were emitted from global rice‐based N 2 O emissions in the 2010s, which was five times larger than that in the 1910s. In the context of regional contribution, southern China, northern India, and Southeast Asia are responsible for more than 80% of the total emissions during 1910–2020. Results suggest that N fertilizer is the most important rice‐N 2 O source quantitively and that increasing irrigation exerts a buffering effect. This study confirmed the potential mitigating effect of co‐managing N fertilizer and irrigation on mitigating rice‐based N 2 O emissions globally. , Key Points N 2 O emissions from global rice‐based ecosystem increased from 0.026 to 0.18 TgN yr −1 between 1910 and 2020 Irrigated rice‐based ecosystems showed larger N 2 O fluxes than rainfed rice globally due to higher N fertilizer use and frequent aerations N fertilizer represents the largest N 2 O source, and co‐management of N fertilizer and flooding regimes is important for mitigation
-
Abstract The increasing atmospheric nitrous oxide (N 2 O) concentration stems from the development of agriculture. However, N 2 O emissions from global rice‐based ecosystems have not been explicitly and systematically quantified. Therefore, this study aims to estimate the spatiotemporal magnitudes of the N 2 O emissions from global rice‐based ecosystems and determine different contribution factors by improving a process‐based biogeochemical model, TRIPLEX‐GHG v2.0. Model validation suggested that the modeled N 2 O agreed well with field observations under varying management practices at daily, seasonal, and annual steps. Simulated N 2 O emissions from global rice‐based ecosystems exhibited significant increasing trends from 0.026 ± 0.0013 to 0.18 ± 0.003 TgN yr −1 from 1910 to 2020, with ∼69.5% emissions attributed to the rice‐growing seasons. Irrigated rice ecosystems accounted for a majority of global rice N 2 O emissions (∼76.9%) because of their higher N 2 O emission rates than rainfed systems. Regarding spatial analysis, Southern China, Northeast India, and Southeast Asia are hotspots for rice‐based N 2 O emissions. Experimental scenarios revealed that N fertilizer is the largest global rice‐N 2 O source, especially since the 1960s (0.047 ± 0.010 TgN yr −1 , 35.24%), while the impact of expanded irrigation plays a minor role. Overall, this study provides a better understanding of the rice‐based ecosystem in the global agricultural N 2 O budget; further, it quantitively demonstrated the central role of N fertilizer in rice‐based N 2 O emissions by including rice crop calendars, covering non‐rice growing seasons, and differentiating the effects of various water regimes and input N forms. Our findings emphasize the significance of co‐management of N fertilizer and water regimes in reducing the net climate impact of global rice cultivation. , Plain Language Summary Nitrous oxide (N 2 O) is a greenhouse gas with ∼300 times greater effect on climate warming than carbon dioxide. Global croplands represent the largest source of anthropogenic N 2 O emissions. However, the contribution of global rice‐based cropping ecosystems to the N 2 O budget remains largely uncertain because of inconsistent observed results. Inspired by the increasing availability of reliable global data sets, we improved and applied a process‐based biogeochemical model by describing the dynamics of various microbial activities to simulate N 2 O emissions from rice‐based ecosystems on a global scale. Model simulations showed that 0.18 million tons of N 2 O‐N were emitted from global rice‐based N 2 O emissions in the 2010s, which was five times larger than that in the 1910s. In the context of regional contribution, southern China, northern India, and Southeast Asia are responsible for more than 80% of the total emissions during 1910–2020. Results suggest that N fertilizer is the most important rice‐N 2 O source quantitively and that increasing irrigation exerts a buffering effect. This study confirmed the potential mitigating effect of co‐managing N fertilizer and irrigation on mitigating rice‐based N 2 O emissions globally. , Key Points N 2 O emissions from global rice‐based ecosystem increased from 0.026 to 0.18 TgN yr −1 between 1910 and 2020 Irrigated rice‐based ecosystems showed larger N 2 O fluxes than rainfed rice globally due to higher N fertilizer use and frequent aerations N fertilizer represents the largest N 2 O source, and co‐management of N fertilizer and flooding regimes is important for mitigation
-
Abstract. The changing Arctic climate is creating increased economic, transportation, and recreational activities requiring reliable and relevant weather information. However, the Canadian Arctic is sparsely observed, and processes governing weather systems in the Arctic are not well understood. There is a recognized lack of meteorological data to characterize the Arctic atmosphere for operational forecasting and to support process studies, satellite calibration/validation, search and rescue operations (which are increasing in the region), high-impact weather (HIW) detection and prediction, and numerical weather prediction (NWP) model verification and evaluation. To address this need, Environment and Climate Change Canada commissioned two supersites, one in Iqaluit (63.74∘ N, 68.51∘ W) in September 2015 and the other in Whitehorse (60.71∘ N, 135.07∘ W) in November 2017 as part of the Canadian Arctic Weather Science (CAWS) project. The primary goals of CAWS are to provide enhanced meteorological observations in the Canadian Arctic for HIW nowcasting (short-range forecast) and NWP model verification, evaluation, and process studies and to provide recommendations on the optimal cost-effective observing system for the Canadian Arctic. Both sites are in provincial/territorial capitals and are economic hubs for the region; they also act as transportation gateways to the north and are in the path of several common Arctic storm tracks. The supersites are located at or next to major airports and existing Meteorological Service of Canada ground-based weather stations that provide standard meteorological surface observations and upper-air radiosonde observations; they are also uniquely situated in close proximity to frequent overpasses by polar-orbiting satellites. The suite of in situ and remote sensing instruments at each site is completely automated (no on-site operator) and operates continuously in all weather conditions, providing near-real-time data to operational weather forecasters, the public, and researchers via obrs.ca. The two sites have similar instruments, including mobile Doppler weather radars, multiple vertically profiling and/or scanning lidars (Doppler, ceilometer, water vapour), optical disdrometers, precipitation gauges in different shielded configurations, present weather sensors, fog monitoring devices, radiation flux sensors, and other meteorological instruments. Details on the two supersites, the suites of instruments deployed, the data collection methods, and example case studies of HIW events are discussed. CAWS data are publicly accessible via the Canadian Government Open Data Portal (https://doi.org/10.18164/ff771396-b22c-4bc3-844d-38fc697049e9, Mariani et al., 2022a, and https://doi.org/10.18164/d92ed3cf-4ba0-4473-beec-357ec45b0e78, Mariani et al., 2022b); this dataset is being used to improve our understanding of synoptic and fine-scale meteorological processes in the Arctic and sub-Arctic, including HIW detection and prediction and NWP verification, assimilation, and processes.