Votre recherche
Résultats 71 ressources
-
Abstract. Using four different climate models, we investigate sea level pressure variability in the extratropical North Atlantic in the preindustrial climate (1750 AD) and at the Last Glacial Maximum (LGM, 21 kyrs before present) in order to understand how changes in atmospheric circulation can affect signals recorded in climate proxies. In general, the models exhibit a significant reduction in interannual variance of sea level pressure at the LGM compared to pre-industrial simulations and this reduction is concentrated in winter. For the preindustrial climate, all models feature a similar leading mode of sea level pressure variability that resembles the leading mode of variability in the instrumental record: the North Atlantic Oscillation (NAO). In contrast, the leading mode of sea level pressure variability at the LGM is model dependent, but in each model different from that in the preindustrial climate. In each model, the leading (NAO-like) mode of variability explains a smaller fraction of the variance and also less absolute variance at the LGM than in the preindustrial climate. The models show that the relationship between atmospheric variability and surface climate (temperature and precipitation) variability change in different climates. Results are model-specific, but indicate that proxy signals at the LGM may be misinterpreted if changes in the spatial pattern and seasonality of surface climate variability are not taken into account.
-
Abstract. The early to mid-Holocene thermal optimum is a well-known feature in a wide variety of paleoclimate archives from the Northern Hemisphere. Reconstructed summer temperature anomalies from across northern Europe show a clear maximum around 6000 years before present (6 ka). For the marine realm, Holocene trends in sea-surface temperature reconstructions for the North Atlantic and Norwegian Sea do not exhibit a consistent pattern of early to mid-Holocene warmth. Sea-surface temperature records based on alkenones and diatoms generally show the existence of a warm early to mid-Holocene optimum. In contrast, several foraminifer and radiolarian based temperature records from the North Atlantic and Norwegian Sea show a cool mid-Holocene anomaly and a trend towards warmer temperatures in the late Holocene. In this paper, we revisit the foraminifer record from the Vøring Plateau in the Norwegian Sea. We also compare this record with published foraminifer based temperature reconstructions from the North Atlantic and with modelled (CCSM3) upper ocean temperatures. Model results indicate that while the seasonal summer warming of the sea-surface was stronger during the mid-Holocene, sub-surface depths experienced a cooling. This hydrographic setting can explain the discrepancies between the Holocene trends exhibited by phytoplankton and zooplankton based temperature proxy records.
-
An extreme megadrought occurred in the Afro-Asian monsoon region during an iceberg melting episode 50,000 years ago. , Between 15,000 and 18,000 years ago, large amounts of ice and meltwater entered the North Atlantic during Heinrich stadial 1. This caused substantial regional cooling, but major climatic impacts also occurred in the tropics. Here, we demonstrate that the height of this stadial, about 16,000 to 17,000 years ago (Heinrich event 1), coincided with one of the most extreme and widespread megadroughts of the past 50,000 years or more in the Afro-Asian monsoon region, with potentially serious consequences for Paleolithic cultures. Late Quaternary tropical drying commonly is attributed to southward drift of the intertropical convergence zone, but the broad geographic range of the Heinrich event 1 megadrought suggests that severe, systemic weakening of Afro-Asian rainfall systems also occurred, probably in response to sea surface cooling.
-
Abstract. The Last Glacial Maximum (LGM; 21 000 yr before present) was a period of low atmospheric greenhouse gas concentrations, when vast ice sheets covered large parts of North America and Europe. Paleoclimate reconstructions and modeling studies suggest that the atmospheric circulation was substantially altered compared to today, both in terms of its mean state and its variability. Here we present a suite of coupled model simulations designed to investigate both the separate and combined influences of the main LGM boundary condition changes (greenhouse gases, ice sheet topography and ice sheet albedo) on the mean state and variability of the atmospheric circulation as represented by sea level pressure (SLP) and 200-hPa zonal wind in the North Atlantic sector. We find that ice sheet topography accounts for most of the simulated changes during the LGM. Greenhouse gases and ice sheet albedo affect the SLP gradient in the North Atlantic, but the overall placement of high and low pressure centers is controlled by topography. Additional analysis shows that North Atlantic sea surface temperatures and sea ice edge position do not substantially influence the pattern of the climatological-mean SLP field, SLP variability or the position of the North Atlantic jet in the LGM.
-
Abstract. Ozone pollution represents a serious health and environmental problem. While ozone pollution is mostly produced by photochemistry in summer, elevated ozone concentrations can also be influenced by long range transport driven by the atmospheric circulation and stratospheric ozone intrusions. We analyze the role of large scale atmospheric circulation variability in the North Atlantic basin in determining surface ozone concentrations over Europe. Here, we show, using ground station measurements and a coupled atmosphere-chemistry model simulation for the period 1980–2005, that the North Atlantic Oscillation (NAO) does affect surface ozone concentrations – on a monthly timescale, over 10 ppbv in southwestern, central and northern Europe – during all seasons except fall. The commonly used NAO index is able to capture the link existing between atmospheric dynamics and surface ozone concentrations in winter and spring but it fails in summer. We find that the first Principal Component, computed from the time variation of the sea level pressure (SLP) field, detects the atmosphere circulation/ozone relationship not only in winter and spring but also during summer, when the atmospheric circulation weakens and regional photochemical processes peak. Given the NAO forecasting skill at intraseasonal time scale, the first Principal Component of the SLP field could be used as an indicator to identify areas more exposed to forthcoming ozone pollution events. Finally, our results suggest that the increasing baseline ozone in western and northern Europe during the 1990s could be related to the prevailing positive phase of the NAO in that period.
-
In this study we use a global climate model to assess particulate matter (PM) variability induced by the North Atlantic Oscillation (NAO) in Europe during winter and the potential impact on human health of a future shift in the NAO mean state. Our study shows that extreme NAO phases in the 1990s modulated most of the interannual variability of winter PM concentrations in several European countries. Increased PM concentrations as a result of a positive shift in the mean winter NAO of one standard deviation would lead to about 5500 additional premature deaths in Mediterranean countries, compared to the simulated average PM health impact for the year 2000. In central‐northern Europe, instead, higher wind speed and increased PM removal by precipitation lead to negative PM concentration anomalies with associated health benefits. We suggest that the NAO index is a useful indicator for the role of interannual atmospheric variability on large‐scale pollution‐health impacts. , Key Points NAO impacts on PM concentrations Potential impacts of NAO shifts on human health Large‐scale atmospheric indicators as proxy for risk estimates of PM episodes
-
Abstract. Numerical model scenarios of future climate depict a global increase in temperatures and changing precipitation patterns, primarily driven by increasing greenhouse gas (GHG) concentrations. Aerosol particles also play an important role by altering the Earth's radiation budget and consequently surface temperature. Here, we use the general circulation aerosol model ECHAM5-HAM, coupled to a mixed layer ocean model, to investigate the impacts of future air pollution mitigation strategies in Europe on winter atmospheric circulation over the North Atlantic. We analyse the extreme case of a maximum feasible end-of-pipe reduction of aerosols in the near future (2030), in combination with increasing GHG concentrations. Our results show a more positive North Atlantic Oscillation (NAO) mean state by 2030, together with a significant eastward shift of the southern centre of action of sea-level pressure (SLP). Moreover, we show a significantly increased blocking frequency over the western Mediterranean. By separating the impacts of aerosols and GHGs, our study suggests that future aerosol abatement may be the primary driver of both the eastward shift in the southern SLP centre of action and the increased blocking frequency over the western Mediterranean. These concomitant modifications of the atmospheric circulation over the Euro-Atlantic sector lead to more stagnant weather conditions that favour air pollutant accumulation, especially in the western Mediterranean sector. Changes in atmospheric circulation should therefore be included in future air pollution mitigation assessments. The indicator-based evaluation of atmospheric circulation changes presented in this work will allow an objective first-order assessment of the role of changes in wintertime circulation on future air quality in other climate model simulations.
-
High-Latitude Volcanic Eruption Impacts on Climate: Filling the Gaps; Stockholm, Sweden, 5–7 November 2014
-
Abstract. Reconstructions of Quaternary climate are often based on the isotopic content of paleo-precipitation preserved in proxy records. While many paleo-precipitation isotope records are available, few studies have synthesized these dispersed records to explore spatial patterns of late-glacial precipitation δ18O. Here we present a synthesis of 86 globally distributed groundwater (n = 59), cave calcite (n = 15) and ice core (n = 12) isotope records spanning the late-glacial (defined as ~ 50 000 to ~ 20 000 years ago) to the late-Holocene (within the past ~ 5000 years). We show that precipitation δ18O changes from the late-glacial to the late-Holocene range from −7.1 ‰ (δ18Olate-Holocene > δ18Olate-glacial) to +1.7 ‰ (δ18Olate-glacial > δ18Olate-Holocene), with the majority (77 %) of records having lower late-glacial δ18O than late-Holocene δ18O values. High-magnitude, negative precipitation δ18O shifts are common at high latitudes, high altitudes and continental interiors (δ18Olate-Holocene > δ18Olate-glacial by more than 3 ‰). Conversely, low-magnitude, positive precipitation δ18O shifts are concentrated along tropical and subtropical coasts (δ18Olate-glacial > δ18Olate-Holocene by less than 2 ‰). Broad, global patterns of late-glacial to late-Holocene precipitation δ18O shifts suggest that stronger-than-modern isotopic distillation of air masses prevailed during the late-glacial, likely impacted by larger global temperature differences between the tropics and the poles. Further, to test how well general circulation models reproduce global precipitation δ18O shifts, we compiled simulated precipitation δ18O shifts from five isotope-enabled general circulation models simulated under recent and last glacial maximum climate states. Climate simulations generally show better inter-model and model-measurement agreement in temperate regions than in the tropics, highlighting a need for further research to better understand how inter-model spread in convective rainout, seawater δ18O and glacial topography parameterizations impact simulated precipitation δ18O. Future research on paleo-precipitation δ18O records can use the global maps of measured and simulated late-glacial precipitation isotope compositions to target and prioritize field sites.
-
Significance In the model simulations analyzed here, large high-latitude volcanic eruptions have global and long-lasting effects on climate, altering the spatiotemporal characteristic of the El Niño–Southern Oscillation (ENSO) on both short (<1 y) and long timescales and affecting the strength of the Atlantic Meridional Overturning Circulation (AMOC). In the first 8–9 mo following the start of the eruption, El Niño-like anomalies develop over the equatorial Pacific. The large high-latitude eruptions also trigger a strengthening of the AMOC in the first 25 y after the eruption, which is associated with an increase in ENSO variability. This is then followed by a weakening of the AMOC lasting another 30–35 y, associated with decreased ENSO variability. , Large volcanic eruptions can have major impacts on global climate, affecting both atmospheric and ocean circulation through changes in atmospheric chemical composition and optical properties. The residence time of volcanic aerosol from strong eruptions is roughly 2–3 y. Attention has consequently focused on their short-term impacts, whereas the long-term, ocean-mediated response has not been well studied. Most studies have focused on tropical eruptions; high-latitude eruptions have drawn less attention because their impacts are thought to be merely hemispheric rather than global. No study to date has investigated the long-term effects of high-latitude eruptions. Here, we use a climate model to show that large summer high-latitude eruptions in the Northern Hemisphere cause strong hemispheric cooling, which could induce an El Niño-like anomaly, in the equatorial Pacific during the first 8–9 mo after the start of the eruption. The hemispherically asymmetric cooling shifts the Intertropical Convergence Zone southward, triggering a weakening of the trade winds over the western and central equatorial Pacific that favors the development of an El Niño-like anomaly. In the model used here, the specified high-latitude eruption also leads to a strengthening of the Atlantic Meridional Overturning Circulation (AMOC) in the first 25 y after the eruption, followed by a weakening lasting at least 35 y. The long-lived changes in the AMOC strength also alter the variability of the El Niño–Southern Oscillation (ENSO).
-
Abstract Sources and timing of freshwater forcing relative to hydroclimate shifts recorded in Greenland ice cores at the onset of Younger Dryas, ∼12,800 years ago, remain speculative. Here we show that progressive Fennoscandian Ice Sheet (FIS) melting 13,100–12,880 years ago generates a hydroclimate dipole with drier–colder conditions in Northern Europe and wetter–warmer conditions in Greenland. FIS melting culminates 12,880 years ago synchronously with the start of Greenland Stadial 1 and a large-scale hydroclimate transition lasting ∼180 years. Transient climate model simulations forced with FIS freshwater reproduce the initial hydroclimate dipole through sea-ice feedbacks in the Nordic Seas. The transition is attributed to the export of excess sea ice to the subpolar North Atlantic and a subsequent southward shift of the westerly winds. We suggest that North Atlantic hydroclimate sensitivity to FIS freshwater can explain the pace and sign of shifts recorded in Greenland at the climate transition into the Younger Dryas.
-
Abstract The last deglaciation (20.0–10.0 kyr B.P.) was punctuated by two major cooling events affecting the Northern Hemisphere: the Oldest Dryas (OD; 18.0–14.7 kyr B.P.) and the Younger Dryas (YD; 12.8–11.5 kyr B.P.). Greenland ice core δ 18 O temperature reconstructions suggest that the YD was as cold as the OD, despite a 50 ppmv increase in atmospheric CO 2 , while modeling studies suggest that the YD was approximately 4–5°C warmer than the OD. This discrepancy has been surmised to result from changes in the origin of the water vapor delivered to Greenland; however, this hypothesis has not been hitherto tested. Here we use an atmospheric circulation model with an embedded moisture‐tracing module to investigate atmospheric processes that may have been responsible for the similar δ 18 O values during the OD and YD. Our results show that the summer‐to‐winter precipitation ratio over central Greenland in the OD is twice as high as in the YD experiment, which shifts the δ 18 O signal toward warmer (summer) temperatures (enriched δ 18 O values and it accounts for ~45% of the expected YD‐OD δ 18 O difference). A change in the inversion (cloud) temperature relationship between the two climate states further contributes (~20%) to altering the δ 18 O‐temperature‐relation model. Our experiments also show a 7% decrease of δ 18 O‐depleted precipitation from distant regions (e.g., the Pacific Ocean) in the OD, hence further contributing (15–20%) in masking the actual temperature difference. All together, these changes provide a physical explanation for the ostensible similarity in the ice core δ 18 O temperature reconstructions in Greenland during OD and YD. , Key Points Precipitation seasonality and inversion temperature changes behind YD‐OD δ 18 O enigma Local processes changes accounting up to 65% of the expected YD‐OD δ 18 O difference Moisture transport changes from the Pacific accounting only up to 20% of the expected YD‐OD δ 18 O difference
-
On the Puzzling Features of Greenland Ice-Core Isotopic Composition; Copenhagen, Denmark, 26–28 October 2015
-
Abstract The summer rainfall across Sahelian‐Sudan is one of the main sources of water for agriculture, human, and animal needs. However, the rainfall is characterized by large interannual variability, which has attracted extensive scientific efforts to understand it. This study attempts to identify the source regions that contribute to the Sahelian‐Sudan moisture budget during July through September. We have used an atmospheric general circulation model with an embedded moisture‐tracing module (Community Atmosphere Model version 3), forced by observed (1979–2013) sea‐surface temperatures. The result suggests that about 40% of the moisture comes with the moisture flow associated with the seasonal migration of the Intertropical Convergence Zone (ITCZ) and originates from Guinea Coast, central Africa, and the Western Sahel. The Mediterranean Sea, Arabian Peninsula, and South Indian Ocean regions account for 10.2%, 8.1%, and 6.4%, respectively. Local evaporation and the rest of the globe supply the region with 20.3% and 13.2%, respectively. We also compared the result from this study to a previous analysis that used the Lagrangian model FLEXPART forced by ERA‐Interim. The two approaches differ when comparing individual regions, but are in better agreement when neighboring regions of similar atmospheric flow features are grouped together. Interannual variability with the rainfall over the region is highly correlated with contributions from regions that are associated with the ITCZ movement, which is in turn linked to the Atlantic Multidecadal Oscillation. Our result is expected to provide insights for the effort on seasonal forecasting of the rainy season over Sahelian Sudan. , Key Points The moisture associated with ITCZ flow accounts for about 40%‐50% of the precipitated water The local evaporation provides about 20% of the precipitated water The multiyear variability in the rainfall seems to be linked to the AMO
-
Abstract A large ensemble of Earth System Model simulations is analyzed to show that high‐latitude Northern Hemisphere eruptions give rise to El Niño‐like anomalies in the winter following the eruption, the amplitude of which depends on the state of the tropical Pacific at the time of the eruption. The El Niño‐like anomalies are almost three times larger when the eruption occurs during an incipient La Niña or during a neutral state compared to an incipient El Niño. The differential response results from stronger atmosphere‐ocean coupling and extra‐tropical feedbacks during an incipient La Niña compared to El Niño. Differences in the response continue through the second and third years following the eruption. When the eruption happens in a year of an incipient El Niño, a large cold (La Niña‐like) anomaly develops in year 2; if the eruption occurs in a year of an incipient La Niña, no anomalies are simulated in year 2 and a La Niña‐like response appears in year 3. After the El Niño‐like anomaly in the first winter, the overall tendency of ENSO in the following 2 years is toward a La Niña state. Our results highlight the high sensitivity of tropical Pacific dynamics under volcanic forcing to the ENSO initial state and lay the groundwork for improved predictions of the global climatic response to high‐latitude volcanic eruptions. , Key Points HL eruptions alter the mean state of ENSO, and detectable anomalies are seen up to 3 years after the eruption Stronger El Niño‐like anomalies on year 1 when eruptions occurs under developing La Niñas La Niña‐like anomalies on year 2 and year 3 when eruptions occurs under developing El Niños and La Niñas, respectively