Votre recherche
Résultats 43 ressources
-
Abstract The strength and variability of the Southern Ocean carbon sink is a significant source of uncertainty in the global carbon budget. One barrier to reconciling observations and models is understanding how synoptic weather patterns modulate air-sea carbon exchange. Here, we identify and track storms using atmospheric sea level pressure fields from reanalysis data to assess the role that storms play in driving air-sea CO 2 exchange. We examine the main drivers of CO 2 fluxes under storm forcing and quantify their contribution to Southern Ocean annual air-sea CO 2 fluxes. Our analysis relies on a forced ocean-ice simulation from the Community Earth System Model, as well as CO 2 fluxes estimated from Biogeochemical Argo floats. We find that extratropical storms in the Southern Hemisphere induce CO 2 outgassing, driven by CO 2 disequilibrium. However, this effect is an order of magnitude larger in observations compared to the model and caused by different reasons. Despite large uncertainties in CO 2 fluxes and storm statistics, observations suggest a pivotal role of storms in driving Southern Ocean air-sea CO 2 outgassing that remains to be well represented in climate models, and needs to be further investigated in observations.
-
Abstract Several observational precipitation products that provide high temporal (≤3 h) and spatial (≤0.25°) resolution gridded estimates are available, although no single product can be assumed worldwide to be closest to the (unknown) “reality.” Here, we propose and apply a methodology to quantify the uncertainty of a set of precipitation products and to identify, at individual grid points, the products that are likely wrong (i.e., outliers). The methodology is applied over eastern North America for the 2015–2019 period for eight high‐resolution gridded precipitation products: CMORPH, ERA5, GSMaP, IMERG, MSWEP, PERSIANN, STAGE IV and TMPA. Four difference metrics are used to quantify discrepancies in different aspects of the precipitation time series, such as the total accumulation, two characteristics of the intensity‐frequency distribution, and the timing of precipitating events. Large regional and seasonal variations in the observational uncertainty are found across the ensemble. The observational uncertainty is higher in Canada than in the United States, reflecting large differences in the density of precipitation gauge measurements. In northern midlatitudes, the uncertainty is highest in winter, demonstrating the difficulties of satellite retrieval algorithms in identifying precipitation in snow‐covered areas. In southern midlatitudes, the uncertainty is highest in summer, probably due to the more discontinuous nature of precipitation. While the best product cannot be identified due to the lack of an absolute reference, our study is able to identify products that are likely wrong and that should be excluded depending on the specific application.
-
Abstract While the ERA5 reanalysis is commonly utilized in climate studies on extratropical cyclones (ETCs), only a few studies have quantified its ability in the representation of ETCs over land. To address this gap, this study evaluates ERA5's skill in representing the ETC‐associated 10‐m wind speed and the precipitation in central and eastern North America during 2005–2019. Hourly data collected from ~3000 stations, amounting to around 420 million reports stored in the Integrated Surface Database, is used as reference. For the spatial‐averaged ETC properties, ERA5 shows a good skill for wind speed with normalized mean bias (NMB) of −0.7% and normalized root‐mean‐square error (NRMSE) of 14.3%, despite a tendency to overestimate low winds and underestimate high winds. The ERA5 skill is worse for precipitation than for wind speed with NMB of −10.4% and NRMSE of 56.5% and a strong tendency to underestimate high values. For both variables, the best and worst performance is found in DJF and JJA, respectively. Negative biases are often identified over regions with stronger precipitation/wind speeds, and a systematic underestimation of wind speed is found over the Rockies with complex topography. Compared to the averaged ETCs, ERA5's performance deteriorates for the top 5% extreme ETCs with a stronger tendency to underestimate both wind speed and precipitation (NMB of −10.2% and −22.6%, respectively). Furthermore, ERA5's skill is worse for local extreme values within ETCs than for spatial averages. Our results highlight some important limitations of the ERA5 reanalysis products for studies looking at the possible impacts of ETCs.
-
Abstract. A fundamental issue associated with the dynamical downscaling technique using limited-area models is related to the presence of a “spatial spin-up” belt close to the lateral boundaries where small-scale features are only partially developed. Here, we introduce a method to identify the distance from the border that is affected by the spatial spin-up (i.e., the spatial spin-up distance) of the precipitation field in convection-permitting model (CPM) simulations. Using a domain over eastern North America, this new method is applied to several simulations that differ on the nesting approach (single or double nesting) and the 3-D variables used to drive the CPM simulation. Our findings highlight three key points. Firstly, when using a single nesting approach, the spin-up distance from lateral boundaries can extend up to 300 km (around 120 CPM grid points), varying across seasons, boundaries and driving variables. Secondly, the greatest spin-up distances occur in winter at the western and southern boundaries, likely due to strong atmospheric inflow during these seasons. Thirdly, employing a double nesting approach with a comprehensive set of microphysical variables to drive CPM simulations offers clear advantages. The computational gains from reducing spatial spin-up outweigh the costs associated with the more demanding intermediate simulation of the double nesting. These results have practical implications for optimizing CPM simulation configurations, encompassing domain selection and driving strategies.
-
The Australian Alps are the highest mountain range in Australia, which are important for biodiversity, energy generation and winter tourism. Significant increases in temperature in the past decades has had a huge impact on biodiversity and ecosystem in this region. In this study, observed temperature is used to assess how temperature changed over the Australian Alps and surrounding areas. We also use outputs from two generations of NARCliM (NSW and Australian Regional Climate Modelling) to investigate spatial and temporal variation of future changes in temperature and its extremes. The results show temperature increases faster for the Australian Alps than the surrounding areas, with clear spatial and temporal variation. The changes in temperature and its extremes are found to be strongly correlated with changes in albedo, which suggests faster warming in cool season might be dominated by decrease in albedo resulting from future changes in natural snowfall and snowpack. The warming induced reduction in future snow cover in the Australian Alps will have a significant impact on this region.
-
The biogeophysical effects of severe forestation are quantified using a new ensemble of regional climate simulations over North America and Europe. Following the protocol outlined for the Land-Use and Climate Across Scales (LUCAS) intercomparison project, two sets of simulations are compared, FOREST and GRASS, which respectively represent worlds where all vegetation is replaced by trees and grasses. Three regional climate models were run over North America. One of them, the Canadian Regional Climate Model (CRCM5), was also run over Europe in an attempt to bridge results with the original LUCAS ensemble, which was confined to Europe. Overall, the CRCM5 response to forestation reveals strong inter-continental similarities, including a pronounced wintertime and springtime warming concentrated over snow-masking evergreen forests. Crucially, these northern evergreen needleleaf forests populate lower, hence sunnier, latitudes in North America than in Europe. Snow masking reduces albedo similarly over both continents, but stronger insolation amplifies the net shortwave radiation and hence warming simulated over North America. In the summertime, CRCM5 produces a mixed response to forestation, with warming over northern needleleaf forests and cooling over southern broadleaf forests. The partitioning of the turbulent heat fluxes plays a major role in determining this response, but it is not robust across models over North America. Implications for the inter-continental transferability of the original LUCAS results are discussed.
-
Abstract The Maritime Continent is one of the most challenging regions for atmospheric models. Processes that modulate deep convection are poorly represented in models, which affects their ability to simulate precipitation features accurately. Thus, future projections of precipitation over the region are prone to large uncertainties. One of the key players in modeling tropical precipitation is the convective representation, and hence convection-permitting experiments have contributed to improve aspects of precipitation in models. This improvement creates opportunities to explore the physical processes that govern rainfall in the Maritime Continent, as well as their role in a warming climate. Here, we examine the response to climate change of models with explicit and parameterized convection and how that reflects in precipitation changes. We focus on the intensification of spatial contrasts as precursors of changes in mean and extreme precipitation in the tropical archipelago. Our results show that the broad picture is similar in both model setups, where islands will undergo an increase in mean and extreme precipitation in a warmer climate and the ocean will see less rain. However, the magnitude and spatial structure of such changes, as well as the projection of rainfall percentiles, are different across model experiments. We suggest that while the primary effect of climate change is thermodynamical and it is similarly reproduced by both model configurations, dynamical effects are represented quite differently in explicit and parameterized convection experiments. In this study, we link such differences to horizontal and vertical spatial contrasts and how convective representations translate them into precipitation changes.
-
Abstract This study investigates the seasonality of near‐surface wind speeds associated with extratropical cyclones (ETCs) over northeastern North America using a global reanalysis data set during 1979–2020. As opposed to most studies that emphasize winter storms, ETCs during the fall exhibit significantly stronger 10‐m winds over this region due to the slightly stronger continental cyclones and significantly weaker low‐level stability during that time of the year. Also, ETCs favor inland lakes and Hudson Bay during the low‐ice‐content fall season, leading to lower surface roughness. Combining these results, we derive simple linear regressions to predict the 10‐m wind speed given three variables: 850‐hPa wind speed, low‐level Richardson number, and surface roughness length. This formula captures the observed seasonality and serves as a valuable tool for cyclone near‐surface wind risk assessment. , Plain Language Summary Extratropical cyclones can bring powerful winds that can cause severe damage to infrastructure. We find that cyclones with severe winds are the most frequent in the fall season over continental northeastern North America. Three reasons are found responsible: stronger continental cyclones, weaker low‐level atmospheric stability, and the lower surface roughness over lakes and Hudson Bay, where cyclones frequently occur in fall. A simple formula that can effectively assess the near‐surface wind speeds associated with cyclones is derived based on these results. , Key Points Extratropical‐cyclone‐associated 10‐m wind speeds are the strongest in the fall season over northeastern North America Besides stronger continental cyclones and 850‐hPa winds, weaker low‐level stability in fall favors stronger 10‐m wind speeds in this region Linear regression using 850‐hPa wind, Richardson number, and surface roughness well predicts cyclones' 10‐m wind speeds and seasonality
-
Abstract The importance of resolving mesoscale air‐sea interactions to represent cyclones impacting the East Coast of Australia, the so‐called East Coast Lows (ECLs), is investigated using the Australian Regional Coupled Model based on NEMO‐OASIS‐WRF (NOW) at resolution. The fully coupled model is shown to be capable of reproducing correctly relevant features such as the seasonality, spatial distribution and intensity of ECLs while it partially resolves mesoscale processes, such as air‐sea feedbacks over ocean eddies and fronts. The mesoscale thermal feedback (TFB) and the current feedback (CFB) are shown to influence the intensity of northern ECLs (north of ), with the TFB modulating the pre‐storm sea surface temperature (SST) by shifting ECL locations eastwards and the CFB modulating the wind stress. By fully uncoupling the atmospheric model of NOW, the intensity of northern ECLs is increased due to the absence of the cold wake that provides a negative feedback to the cyclone. The number of ECLs might also be affected by the air‐sea feedbacks but large interannual variability hampers significant results with short‐term simulations. The TFB and CFB modify the climatology of SST (mean and variability) but no direct link is found between these changes and those noticed in ECL properties. These results show that the representation of ECLs, mainly north of , depend on how air‐sea feedbacks are simulated. This is particularly important for atmospheric downscaling of climate projections as small‐scale SST interactions and the effects of ocean currents are not accounted for. , Plain Language Summary Air‐sea interactions occur at a variety of spatial scales, including those of the size of ocean eddies. Such interactions are partially resolved in the Australian Regional Coupled Model used to simulate the cyclones impacting the East Coast of Australia, the so‐called East Coast Lows (ECLs). The effect of different feedbacks between the ocean and the atmosphere, including those due to mechanical and thermal exchanges over ocean eddies, are tested on the properties of ECLs. Significant effects are found on the intensity of ECLs north of , with also potential effects on the number of ECLs. The air‐sea feedbacks modify the climatology of sea surface temperature, with no direct link to ECL changes. Such experiments eventually demonstrate that small‐scale air‐sea feedbacks may matter for representing current Australian climate and its change in the future. , Key Points High‐resolution regional coupled modeling can simulate key features of East Australian cyclones Cyclone intensity is sensitive to mechanical and thermal air‐sea feedbacks at mesoscales Coupled and atmosphere‐only models mainly differ in simulating cyclone properties north of
-
Abstract A fundamental issue when evaluating the simulation of precipitation is the difficulty of quantifying specific sources of errors and recognizing compensation of errors. We assess how well a large ensemble of high‐resolution simulations represents the precipitation associated with strong cyclones. We propose a framework to breakdown precipitation errors according to different dynamical (vertical velocity) and thermodynamical (vertically integrated water vapor) regimes and the frequency and intensity of precipitation. This approach approximates the error in the total precipitation of each regime as the sum of three terms describing errors in the large‐scale environmental conditions, the frequency of precipitation and its intensity. We show that simulations produce precipitation too often, that its intensity is too weak, that errors are larger for weak than for strong dynamical forcing and that biases in the vertically integrated water vapor can be large. Using the error breakdown presented above, we define four new error metrics differing on the degree to which they include the compensation of errors. We show that convection‐permitting simulations consistently improve the simulation of precipitation compared to coarser‐resolution simulations using parameterized convection, and that these improvements are revealed by our new approach but not by traditional metrics which can be affected by compensating errors. These results suggest that convection‐permitting models are more likely to produce better results for the right reasons. We conclude that the novel decomposition and error metrics presented in this study give a useful framework that provides physical insights about the sources of errors and a reliable quantification of errors. , Plain Language Summary The simulations of complex physical processes always entail various sources of errors. These errors can be of different sign and can consequently cancel each other out when using traditional performance metrics such as the bias error metric. We present a formal framework that allows us to approximate precipitation according to three terms that describe different aspects of the rainfall field including large‐scale environmental conditions and the frequency and intensity of rainfall. We apply the methodology to a large ensemble of high‐resolution simulations representing the precipitation associated with strong cyclones in eastern Australia. We show that simulations produce precipitation too often, with an intensity that is too weak leading to strong compensation. We further define new error metrics that explicitly quantify the degree of error compensation when simulating precipitation. We show that convection‐permitting simulations consistently improve the performance compared to coarser resolution simulations using parameterized convection and that these improvements are only revealed when using the new error metrics but are not apparent in traditional metrics (e.g., bias). , Key Points Multiple high‐resolution simulations produce precipitation too often with underestimated intensity leading to strong error compensation Errors in precipitation are quantified using novel metrics that prevent error compensation showing value compared with traditional metrics Convection permitting simulations outperform the representation of precipitation compared to simulations using parameterized convection
-
Abstract Compound events (CEs) are weather and climate events that result from multiple hazards or drivers with the potential to cause severe socio-economic impacts. Compared with isolated hazards, the multiple hazards/drivers associated with CEs can lead to higher economic losses and death tolls. Here, we provide the first analysis of multiple multivariate CEs potentially causing high-impact floods, droughts, and fires. Using observations and reanalysis data during 1980–2014, we analyse 27 hazard pairs and provide the first spatial estimates of their occurrences on the global scale. We identify hotspots of multivariate CEs including many socio-economically important regions such as North America, Russia and western Europe. We analyse the relative importance of different multivariate CEs in six continental regions to highlight CEs posing the highest risk. Our results provide initial guidance to assess the regional risk of CE events and an observationally-based dataset to aid evaluation of climate models for simulating multivariate CEs.
-
Abstract. Several sets of reference regions have been used in the literature for the regional synthesis of observed and modelled climate and climate change information. A popular example is the series of reference regions used in the Intergovernmental Panel on Climate Change (IPCC) Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Adaptation (SREX). The SREX regions were slightly modified for the Fifth Assessment Report of the IPCC and used for reporting subcontinental observed and projected changes over a reduced number (33) of climatologically consistent regions encompassing a representative number of grid boxes. These regions are intended to allow analysis of atmospheric data over broad land or ocean regions and have been used as the basis for several popular spatially aggregated datasets, such as the Seasonal Mean Temperature and Precipitation in IPCC Regions for CMIP5 dataset. We present an updated version of the reference regions for the analysis of new observed and simulated datasets (including CMIP6) which offer an opportunity for refinement due to the higher atmospheric model resolution. As a result, the number of land and ocean regions is increased to 46 and 15, respectively, better representing consistent regional climate features. The paper describes the rationale for the definition of the new regions and analyses their homogeneity. The regions are defined as polygons and are provided as coordinates and a shapefile together with companion R and Python notebooks to illustrate their use in practical problems (e.g. calculating regional averages). We also describe the generation of a new dataset with monthly temperature and precipitation, spatially aggregated in the new regions, currently for CMIP5 and CMIP6, to be extended to other datasets in the future (including observations). The use of these reference regions, dataset and code is illustrated through a worked example using scatter plots to offer guidance on the likely range of future climate change at the scale of the reference regions. The regions, datasets and code (R and Python notebooks) are freely available at the ATLAS GitHub repository: https://github.com/SantanderMetGroup/ATLAS (last access: 24 August 2020), https://doi.org/10.5281/zenodo.3998463 (Iturbide et al., 2020).
-
Abstract We quantify the skill of Coupled Model Intercomparison Project Phase 5 (CMIP5) and CMIP6 models to represent daily temperature extremes. We find CMIP models systematically exaggerate the magnitude of daily temperature anomalies for both cold and hot extremes. We assess the contribution to a daily temperature extreme from four terms: the long‐term mean annual cycle, the diurnal cycle, synoptic variability, and seasonal variability for both cold and hot extremes. These four terms are combined, and the overall performance of individual climate models assessed. This identifies those models that can simulate temperature extremes well and simulate them well for the right reasons. The new error metric shows that increases in horizontal resolution usually lead to a better performance particularly for the coarser resolution models. The CMIP6 improvements relative to CMIP5 are systematic across most land regions and are only partially explained by the increase in horizontal resolution, and other differences must therefore help explain the higher CMIP6 skill. , Key Points CMIP5 and CMIP6 models exaggerate the magnitude of daily temperature anomalies for hot days and cold nights extremes Higher‐resolution models improve the simulation of temperature extremes largely due to better simulation of synoptic scales CMIP6 outperforms the simulation of temperature extremes compared to CMIP5 beyond the benefits given by the higher resolution
-
Abstract Several regions of the world, including the east coast of Australia, are characterized by the occurrence of low‐pressure systems with a range of different dynamical structures, including tropical, extratropical, and hybrid cyclones. Future changes in the occurrence of cyclones are better understood if storms are classified according to their dynamical structure. Therefore, we apply a classification of cyclones according to their cold‐core or warm‐core structure to an ensemble of regional climate model simulations. First, we show that historical simulations reproduce well the reanalysis results in terms of cyclone classification. We then show that once cyclone classification is applied, projections of future cyclone activity become more robust, including a decrease in the occurrence of both cold‐core and warm‐core cyclones. Finally, we show that in a warmer climate warm‐core hybrid cyclone activity could increase close to the coast, while the associated rainfall and wind are projected to increase. , Plain Language Summary Cyclones in the tropics derive their energy from the temperature difference between warm ocean waters and the atmosphere and their interior is warmer than the environment (warm core), while cyclones in the midlatitudes derive their energy from differences in the atmospheric temperature and density at different locations and their interior is colder than the environment (cold core). In subtropical regions both types of cyclone can form. Also in those regions cyclones known as hybrid cyclones form, with mixed tropical‐extratropical features, such as a partial lower tropospheric warm core and a partial upper tropospheric cold core. This study is focused on cyclones along the eastern coast of Australia. Here we show that dividing cyclones in different classes according to their thermal structure provides a better framework to interpret changes in cyclone activity at subtropical latitudes. This study has two main results. First, classifying cyclones adds value to climate projection robustness. A large number of models agree on the decrease in the occurrence of both cold‐core and warm‐core cyclones. The study also indicates increased occurrence of hybrid cyclones close to the Australian coast. Second, the study shows evidence of future changes in cyclone‐related impacts, such as an increase in the associated rainfall. , Key Points A physically based classification of hybrid cyclones is applied to an ensemble of regional climate model simulations The cyclone classification method adds value to the projections of future cyclone activity, making them more robust Results indicate future changes (2060–2079) toward more intense impacts associated with hybrid cyclones
-
Abstract Like many western boundary currents, the East Australian Current (EAC) extension is projected to get stronger and warmer in the future. The CMIP5 multimodel mean (MMM) projection suggests up to 5°C of warming under an RCP85 scenario by 2100. Previous studies employed Sverdrup balance to associate a trend in basin wide zonally integrated wind stress curl (resulting from the multidecadal poleward intensification in the westerly winds over the Southern Ocean) with enhanced transport in the EAC extension. Possible regional drivers are yet to be considered. Here we introduce the NEMO‐OASIS‐WRF coupled regional climate model as a framework to improve our understanding of CMIP5 projections. We analyze a hierarchy of simulations in which the regional atmosphere and ocean circulations are allowed to freely evolve subject to boundary conditions that represent present‐day and CMIP5 RCP8.5 climate change anomalies. Evaluation of the historical simulation shows an EAC extension that is stronger than similar ocean‐only models and observations. This bias is not explained by a linear response to differences in wind stress. The climate change simulations show that regional atmospheric CMIP5 MMM anomalies drive 73% of the projected 12 Sv increase in EAC extension transport whereas the remote ocean boundary conditions and regional radiative forcing (greenhouse gases within the domain) play a smaller role. The importance of regional changes in wind stress curl in driving the enhanced EAC extension is consistent with linear theory where the NEMO‐OASIS‐WRF response is closer to linear transport estimates compared to the CMIP5 MMM. , Plain Language Summary In recent decades, enhanced warming, severe marine heatwaves, and increased transport by the East Australian Current have led to the invasion of nonnative species and the destruction of kelp forests east of Tasmania. The East Australian Current extension is projected to get stronger and warmer in the future. We seek to better understand coupled climate model projections for the Tasman Sea. This is difficult because there is large model diversity and considerable uncertainty as to how and where future changes will occur. In addition, little is known about the possible importance of regional versus large‐scale changes in surface time‐mean winds in driving future circulation changes. Here we use a single limited‐domain ocean‐atmosphere coupled model that takes the average model projections as its inputs and finds that changes in the regional wind stress are most important for the enhanced projected East Australian Current extension. We also find that these projected changes are consistent with simple linear theory and the simulated regional changes in wind stress. , Key Points NEMO‐OASIS‐WRF coupled regional climate model is evaluated and introduced as a new tool for analyzing Tasman Sea climate projections NEMO‐OASIS‐WRF projections suggest that local atmospheric changes drive 73% of the projected 12 Sv increase in EAC extension transport The importance of regional changes in wind stress curl driving the enhanced EAC extension is consistent with linear theory