Votre recherche
Résultats 2 ressources
-
Abstract The Maritime Continent is one of the most challenging regions for atmospheric models. Processes that modulate deep convection are poorly represented in models, which affects their ability to simulate precipitation features accurately. Thus, future projections of precipitation over the region are prone to large uncertainties. One of the key players in modeling tropical precipitation is the convective representation, and hence convection-permitting experiments have contributed to improve aspects of precipitation in models. This improvement creates opportunities to explore the physical processes that govern rainfall in the Maritime Continent, as well as their role in a warming climate. Here, we examine the response to climate change of models with explicit and parameterized convection and how that reflects in precipitation changes. We focus on the intensification of spatial contrasts as precursors of changes in mean and extreme precipitation in the tropical archipelago. Our results show that the broad picture is similar in both model setups, where islands will undergo an increase in mean and extreme precipitation in a warmer climate and the ocean will see less rain. However, the magnitude and spatial structure of such changes, as well as the projection of rainfall percentiles, are different across model experiments. We suggest that while the primary effect of climate change is thermodynamical and it is similarly reproduced by both model configurations, dynamical effects are represented quite differently in explicit and parameterized convection experiments. In this study, we link such differences to horizontal and vertical spatial contrasts and how convective representations translate them into precipitation changes.
-
Abstract The importance of resolving mesoscale air‐sea interactions to represent cyclones impacting the East Coast of Australia, the so‐called East Coast Lows (ECLs), is investigated using the Australian Regional Coupled Model based on NEMO‐OASIS‐WRF (NOW) at resolution. The fully coupled model is shown to be capable of reproducing correctly relevant features such as the seasonality, spatial distribution and intensity of ECLs while it partially resolves mesoscale processes, such as air‐sea feedbacks over ocean eddies and fronts. The mesoscale thermal feedback (TFB) and the current feedback (CFB) are shown to influence the intensity of northern ECLs (north of ), with the TFB modulating the pre‐storm sea surface temperature (SST) by shifting ECL locations eastwards and the CFB modulating the wind stress. By fully uncoupling the atmospheric model of NOW, the intensity of northern ECLs is increased due to the absence of the cold wake that provides a negative feedback to the cyclone. The number of ECLs might also be affected by the air‐sea feedbacks but large interannual variability hampers significant results with short‐term simulations. The TFB and CFB modify the climatology of SST (mean and variability) but no direct link is found between these changes and those noticed in ECL properties. These results show that the representation of ECLs, mainly north of , depend on how air‐sea feedbacks are simulated. This is particularly important for atmospheric downscaling of climate projections as small‐scale SST interactions and the effects of ocean currents are not accounted for. , Plain Language Summary Air‐sea interactions occur at a variety of spatial scales, including those of the size of ocean eddies. Such interactions are partially resolved in the Australian Regional Coupled Model used to simulate the cyclones impacting the East Coast of Australia, the so‐called East Coast Lows (ECLs). The effect of different feedbacks between the ocean and the atmosphere, including those due to mechanical and thermal exchanges over ocean eddies, are tested on the properties of ECLs. Significant effects are found on the intensity of ECLs north of , with also potential effects on the number of ECLs. The air‐sea feedbacks modify the climatology of sea surface temperature, with no direct link to ECL changes. Such experiments eventually demonstrate that small‐scale air‐sea feedbacks may matter for representing current Australian climate and its change in the future. , Key Points High‐resolution regional coupled modeling can simulate key features of East Australian cyclones Cyclone intensity is sensitive to mechanical and thermal air‐sea feedbacks at mesoscales Coupled and atmosphere‐only models mainly differ in simulating cyclone properties north of