Accéder au contenu Accéder au menu principal Accéder à la recherche
Accéder au contenu Accéder au menu principal
UQAM logo
Page d'accueil de l'UQAM Étudier à l'UQAM Bottin du personnel Carte du campus Bibliothèques Pour nous joindre

Service des bibliothèques

Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
UQAM logo
Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  • Bibliographie
  • Accueil
  1. Vitrine des bibliographies
  2. Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  3. Résultats
  • Accueil

Votre recherche

Réinitialiser la recherche

Aide

L’interface de recherche est composée de trois sections : Rechercher, Explorer et Résultats. Celles-ci sont décrites en détail ci-dessous.

Vous pouvez lancer une recherche aussi bien à partir de la section Rechercher qu’à partir de la section Explorer.

Rechercher

Cette section affiche vos critères de recherche courants et vous permet de soumettre des mots-clés à chercher dans la bibliographie.

  • Chaque nouvelle soumission ajoute les mots-clés saisis à la liste des critères de recherche.
  • Pour lancer une nouvelle recherche plutôt qu’ajouter des mots-clés à la recherche courante, utilisez le bouton Réinitialiser la recherche, puis entrez vos mots-clés.
  • Pour remplacer un mot-clé déjà soumis, veuillez d’abord le retirer en décochant sa case à cocher, puis soumettre un nouveau mot-clé.
  • Vous pouvez contrôler la portée de votre recherche en choisissant où chercher. Les options sont :
    • Partout : repère vos mots-clés dans tous les champs des références bibliographiques ainsi que dans le contenu textuel des documents disponibles.
    • Dans les auteurs ou contributeurs : repère vos mots-clés dans les noms d’auteurs ou de contributeurs.
    • Dans les titres : repère vos mots-clés dans les titres.
    • Dans tous les champs : repère vos mots-clés dans tous les champs des notices bibliographiques.
    • Dans les documents : repère vos mots-clés dans le contenu textuel des documents disponibles.
  • Vous pouvez utiliser les opérateurs booléens avec vos mots-clés :
    • ET : repère les références qui contiennent tous les termes fournis. Ceci est la relation par défaut entre les termes séparés d’un espace. Par exemple, a b est équivalent à a ET b.
    • OU : repère les références qui contiennent n’importe lequel des termes fournis. Par exemple, a OU b.
    • SAUF : exclut les références qui contiennent le terme fourni. Par exemple, SAUF a.
    • Les opérateurs booléens doivent être saisis en MAJUSCULES.
  • Vous pouvez faire des groupements logiques (avec les parenthèses) pour éviter les ambiguïtés lors de la combinaison de plusieurs opérateurs booléens. Par exemple, (a OU b) ET c.
  • Vous pouvez demander une séquence exacte de mots (avec les guillemets droits), par exemple "a b c". Par défaut la différence entre les positions des mots est de 1, ce qui signifie qu’une référence sera repérée si elle contient les mots et qu’ils sont consécutifs. Une distance maximale différente peut être fournie (avec le tilde), par exemple "a b"~2 permet jusqu’à un terme entre a et b, ce qui signifie que la séquence a c b pourrait être repérée aussi bien que a b.
  • Vous pouvez préciser que certains termes sont plus importants que d’autres (avec l’accent circonflexe). Par exemple, a^2 b c^0.5 indique que a est deux fois plus important que b dans le calcul de pertinence des résultats, tandis que c est de moitié moins important. Ce type de facteur peut être appliqué à un groupement logique, par exemple (a b)^3 c.
  • La recherche par mots-clés est insensible à la casse et les accents et la ponctuation sont ignorés.
  • Les terminaisons des mots sont amputées pour la plupart des champs, tels le titre, le résumé et les notes. L’amputation des terminaisons vous évite d’avoir à prévoir toutes les formes possibles d’un mot dans vos recherches. Ainsi, les termes municipal, municipale et municipaux, par exemple, donneront tous le même résultat. L’amputation des terminaisons n’est pas appliquée au texte des champs de noms, tels auteurs/contributeurs, éditeur, publication.

Explorer

Cette section vous permet d’explorer les catégories associées aux références.

  • Les catégories peuvent servir à affiner votre recherche. Cochez une catégorie pour l’ajouter à vos critères de recherche. Les résultats seront alors restreints aux références qui sont associées à cette catégorie.
  • Dé-cochez une catégorie pour la retirer de vos critères de recherche et élargir votre recherche.
  • Les nombres affichés à côté des catégories indiquent combien de références sont associées à chaque catégorie considérant les résultats de recherche courants. Ces nombres varieront en fonction de vos critères de recherche, de manière à toujours décrire le jeu de résultats courant. De même, des catégories et des facettes entières pourront disparaître lorsque les résultats de recherche ne contiennent aucune référence leur étant associées.
  • Une icône de flèche () apparaissant à côté d’une catégorie indique que des sous-catégories sont disponibles. Vous pouvez appuyer sur l’icône pour faire afficher la liste de ces catégories plus spécifiques. Par la suite, vous pouvez appuyer à nouveau pour masquer la liste. L’action d’afficher ou de masquer les sous-catégories ne modifie pas vos critères de recherche; ceci vous permet de rapidement explorer l’arborescence des catégories, si désiré.

Résultats

Cette section présente les résultats de recherche. Si aucun critère de recherche n’a été fourni, elle montre toute la bibliographie (jusqu’à 20 références par page).

  • Chaque référence de la liste des résultats est un hyperlien vers sa notice bibliographique complète. À partir de la notice, vous pouvez continuer à explorer les résultats de recherche en naviguant vers les notices précédentes ou suivantes de vos résultats de recherche, ou encore retourner à la liste des résultats.
  • Des hyperliens supplémentaires, tels que Consulter le document ou Consulter sur [nom d’un site web], peuvent apparaître sous un résultat de recherche. Ces liens vous fournissent un accès rapide à la ressource, des liens que vous trouverez également dans la notice bibliographique.
  • Le bouton Résumés vous permet d’activer ou de désactiver l’affichage des résumés dans la liste des résultats de recherche. Toutefois, activer l’affichage des résumés n’aura aucun effet sur les résultats pour lesquels aucun résumé n’est disponible.
  • Diverses options sont fournies pour permettre de contrôler l’ordonnancement les résultats de recherche. L’une d’elles est l’option de tri par Pertinence, qui classe les résultats du plus pertinent au moins pertinent. Le score utilisé à cette fin prend en compte la fréquence des mots ainsi que les champs dans lesquels ils apparaissent. Par exemple, si un terme recherché apparaît fréquemment dans une référence ou est l’un d’un très petit nombre de termes utilisé dans cette référence, cette référence aura probablement un score plus élevé qu’une autre où le terme apparaît moins fréquemment ou qui contient un très grand nombre de mots. De même, le score sera plus élevé si un terme est rare dans l’ensemble de la bibliographie que s’il est très commun. De plus, si un terme de recherche apparaît par exemple dans le titre d’une référence, le score de cette référence sera plus élevé que s’il apparaissait dans un champ moins important tel le résumé.
  • Le tri par Pertinence n’est disponible qu’après avoir soumis des mots-clés par le biais de la section Rechercher.
  • Les catégories sélectionnées dans la section Explorer n’ont aucun effet sur le tri par pertinence. Elles ne font que filtrer la liste des résultats.
Auteur·e·s
  • Lucas-Picher, Philippe
Année de publication
  • Entre 2000 et 2025

Résultats 45 ressources

Date décroissanteDate croissanteAuteur A-ZAuteur Z-ATitre A-ZTitre Z-A
  • 1
  • 2
  • 3
  • Page 1 de 3
Résumés
  • Poncet, N., Lucas-Picher, P., Tramblay, Y., Thirel, G., Vergara, H., Gourley, J., & Alias, A. (2024). Does a convection-permitting regional climate model bring new perspectives on the projection of Mediterranean floods? Natural Hazards and Earth System Sciences, 24(4), 1163–1183. https://doi.org/10.5194/nhess-24-1163-2024

    Abstract. Floods are the primary natural hazard in the French Mediterranean area, causing damages and fatalities every year. These floods are triggered by heavy precipitation events (HPEs) characterized by limited temporal and spatial extents. A new generation of regional climate models at the kilometer scale have been developed, allowing an explicit representation of deep convection and improved simulations of local-scale phenomena such as HPEs. Convection-permitting regional climate models (CPMs) have been scarcely used in hydrological impact studies, and future projections of Mediterranean floods remain uncertain with regional climate models (RCMs). In this paper, we use the CNRM-AROME CPM (2.5 km) and its driving CNRM-ALADIN RCM (12 km) at the hourly timescale to simulate floods over the Gardon d'Anduze catchment located in the French Mediterranean region. Climate simulations are bias-corrected with the CDF-t method. Two hydrological models, a lumped and conceptual model (GR5H) and a process-based distributed model (CREST), forced with historical and future climate simulations from the CPM and from the RCM, have been used. The CPM model confirms its ability to better reproduce extreme hourly rainfall compared to the RCM. This added value is propagated on flood simulation with a better reproduction of flood peaks. Future projections are consistent between the hydrological models but differ between the two climate models. Using the CNRM-ALADIN RCM, the magnitude of all floods is projected to increase. With the CNRM-AROME CPM, a threshold effect is found: the magnitude of the largest floods is expected to intensify, while the magnitude of the less severe floods is expected to decrease. In addition, different flood event characteristics indicate that floods are expected to become flashier in a warmer climate, with shorter lag time between rainfall and runoff peak and a smaller contribution of base flow, regardless of the model. This study is a first step for impact studies driven by CPMs over the Mediterranean.

    Consulter sur nhess.copernicus.org
  • Roberge, F., Di Luca, A., Laprise, R., Lucas-Picher, P., & Thériault, J. (2024). Spatial spin-up of precipitation in limited-area convection-permitting simulations over North America using the CRCM6/GEM5.0 model. Geoscientific Model Development, 17(4), 1497–1510. https://doi.org/10.5194/gmd-17-1497-2024

    Abstract. A fundamental issue associated with the dynamical downscaling technique using limited-area models is related to the presence of a “spatial spin-up” belt close to the lateral boundaries where small-scale features are only partially developed. Here, we introduce a method to identify the distance from the border that is affected by the spatial spin-up (i.e., the spatial spin-up distance) of the precipitation field in convection-permitting model (CPM) simulations. Using a domain over eastern North America, this new method is applied to several simulations that differ on the nesting approach (single or double nesting) and the 3-D variables used to drive the CPM simulation. Our findings highlight three key points. Firstly, when using a single nesting approach, the spin-up distance from lateral boundaries can extend up to 300 km (around 120 CPM grid points), varying across seasons, boundaries and driving variables. Secondly, the greatest spin-up distances occur in winter at the western and southern boundaries, likely due to strong atmospheric inflow during these seasons. Thirdly, employing a double nesting approach with a comprehensive set of microphysical variables to drive CPM simulations offers clear advantages. The computational gains from reducing spatial spin-up outweigh the costs associated with the more demanding intermediate simulation of the double nesting. These results have practical implications for optimizing CPM simulation configurations, encompassing domain selection and driving strategies.

    Consulter sur gmd.copernicus.org
  • Cortés-Hernández, V. E., Caillaud, C., Bellon, G., Brisson, E., Alias, A., & Lucas-Picher, P. (2024). Evaluation of the convection permitting regional climate model CNRM-AROME on the orographically complex island of Corsica. Climate Dynamics, 62(6), 4673–4696. https://doi.org/10.1007/s00382-024-07232-z

    Abstract Meteorological processes over islands with complex orography could be better simulated by Convection Permitting Regional Climate Models (CP-RCMs) thanks to an improved representation of the orography, land–sea contrasts, the combination of coastal and orographic effects, and explicit deep convection. This paper evaluates the ability of the CP-RCM CNRM-AROME (2.5-km horizontal resolution) to simulate relevant meteorological characteristics of the Mediterranean island of Corsica for the 2000–2018 period. These hindcast simulations are compared to their driving Regional Climate Model (RCM) CNRM-ALADIN (12.5-km horizontal resolution and parameterised convection), weather stations for precipitation and wind and gridded precipitation datasets. The main benefits are found in the representation of (i) precipitation extremes resulting mainly from mesoscale convective systems affected by steep mountains during autumn and (ii) the formation of convection through thermally induced diurnal circulations and their interaction with the orography during summer. Simulations of hourly precipitation extremes, the diurnal cycle of precipitation, the distribution of precipitation intensities, the duration of precipitation events, and sea breezes are all improved in the 2.5-km simulations with respect to the RCM, confirming an added value. However, existing differences between model simulations and observations are difficult to explain as the main biases are related to the availability and quality of observations, particularly at high elevations. Overall, better results from the 2.5-km resolution, increase our confidence in CP-RCMs to investigate future climate projections for Corsica and islands with complex terrain.

    Consulter sur link.springer.com
  • Lucas-Picher, P., Brisson, E., Caillaud, C., Alias, A., Nabat, P., Lemonsu, A., Poncet, N., Cortés Hernandez, V. E., Michau, Y., Doury, A., Monteiro, D., & Somot, S. (2024). Evaluation of the convection-permitting regional climate model CNRM-AROME41t1 over Northwestern Europe. Climate Dynamics, 62(6), 4587–4615. https://doi.org/10.1007/s00382-022-06637-y

    Abstract Since a decade, convection-permitting regional climate models (CPRCM) have emerged showing promising results, especially in improving the simulation of precipitation extremes. In this article, the CPRCM CNRM-AROME developed at the Centre National de Recherches Météorologiques (CNRM) since a few years is described and evaluated using a 2.5-km 19-year long hindcast simulation over a large northwestern European domain using different observations through an added-value analysis in which a comparison with its driving 12-km RCM CNRM-ALADIN is performed. The evaluation is challenging due to the lack of high-quality observations at both high temporal and spatial resolutions. Thus, a high spatio-temporal observed gridded precipitation dataset was built from the collection of seven national datasets that helped the identification of added value in CNRM-AROME. The evaluation is based on a series of standard climatic features that include long-term means and mean annual cycles of precipitation and near-surface temperature where CNRM-AROME shows little improvements compared to CNRM-ALADIN. Additional indicators such as the summer diurnal cycle and indices of extreme precipitation show, on the contrary, a more realistic behaviour of the CNRM-AROME model. Moreover, the analysis of snow cover shows a clear added-value in the CNRM-AROME simulation, principally due to the improved description of the orography with the CPRCM high resolution. Additional analyses include the evaluation of incoming shortwave radiation, and cloud cover using satellite estimates. Overall, despite some systematic biases, the evaluation indicates that CNRM-AROME is a suitable CPRCM that is superior in many aspects to the RCM CNRM-ALADIN.

    Consulter sur link.springer.com
  • Michau, Y., Lemonsu, A., Lucas-Picher, P., Schneider, M., & Caillaud, C. (2024). On the future evolution of heatwaves in French cities and associated rural areas: Insights from a convection-permitting model. Urban Climate, 55, 101920. https://doi.org/10.1016/j.uclim.2024.101920
    Consulter sur linkinghub.elsevier.com
  • Ricard, S., Lucas-Picher, P., Thiboult, A., & Anctil, F. (2023). Producing reliable hydrologic scenarios from raw climate model outputs without resorting to meteorological observations. Hydrology and Earth System Sciences, 27(12), 2375–2395. https://doi.org/10.5194/hess-27-2375-2023

    Abstract. A simplified hydroclimatic modelling workflow is proposed to quantify the impact of climate change on water discharge without resorting to meteorological observations. This alternative approach is designed by combining asynchronous hydroclimatic modelling and quantile perturbation applied to streamflow observations. Calibration is run by forcing hydrologic models with raw climate model outputs using an objective function that excludes the day-to-day temporal correlation between simulated and observed hydrographs. The resulting hydrologic scenarios provide useful and reliable information considering that they (1) preserve trends and physical consistency between simulated climate variables, (2) are implemented from a modelling cascade despite observation scarcity, and (3) support the participation of end-users in producing and interpreting climate change impacts on water resources. The proposed modelling workflow is implemented over four sub-catchments of the Chaudière River, Canada, using nine North American Coordinated Regional Climate Downscaling Experiment (NA-CORDEX) simulations and a pool of lumped conceptual hydrologic models. Results confirm that the proposed workflow produces equivalent projections of the seasonal mean flows in comparison to a conventional hydroclimatic modelling approach. They also highlight the sensibility of the proposed workflow to strong biases affecting raw climate model outputs, frequently causing outlying projections of the hydrologic regime. Inappropriate forcing climate simulations were however successfully identified (and excluded) using the performance of the simulated hydrologic response as a ranking criterion. Results finally suggest that further works should be conducted to confirm the reliability of the proposed workflow to assess the impact of climate change on high- and low-flow events.

    Consulter sur hess.copernicus.org
  • Lemonsu, A., Caillaud, C., Alias, A., Riette, S., Seity, Y., Le Roy, B., Michau, Y., & Lucas-Picher, P. (2023). What added value of CNRM-AROME convection-permitting regional climate model compared to CNRM-ALADIN regional climate model for urban climate studies ? Evaluation over Paris area (France). Climate Dynamics, 61(3–4), 1643–1661. https://doi.org/10.1007/s00382-022-06647-w
    Consulter sur link.springer.com
  • Michau, Y., Lemonsu, A., Lucas-Picher, P., & Caillaud, C. (2023). Evaluation of the Urban Heat Island of 12 cities of France in a high-resolution regional climate model simulation. Urban Climate, 47, 101386. https://doi.org/10.1016/j.uclim.2022.101386
    Consulter sur linkinghub.elsevier.com
  • Sebok, E., Henriksen, H. J., Pastén-Zapata, E., Berg, P., Thirel, G., Lemoine, A., Lira-Loarca, A., Photiadou, C., Pimentel, R., Royer-Gaspard, P., Kjellström, E., Christensen, J. H., Vidal, J. P., Lucas-Picher, P., Donat, M. G., Besio, G., Polo, M. J., Stisen, S., Caballero, Y., … Refsgaard, J. C. (2022). Use of expert elicitation to assign weights to climate and hydrological models in climate impact studies. Hydrology and Earth System Sciences, 26(21), 5605–5625. https://doi.org/10.5194/hess-26-5605-2022

    Abstract. Various methods are available for assessing uncertainties in climate impact studies. Among such methods, model weighting by expert elicitation is a practical way to provide a weighted ensemble of models for specific real-world impacts. The aim is to decrease the influence of improbable models in the results and easing the decision-making process. In this study both climate and hydrological models are analysed, and the result of a research experiment is presented using model weighting with the participation of six climate model experts and six hydrological model experts. For the experiment, seven climate models are a priori selected from a larger EURO-CORDEX (Coordinated Regional Downscaling Experiment – European Domain) ensemble of climate models, and three different hydrological models are chosen for each of the three European river basins. The model weighting is based on qualitative evaluation by the experts for each of the selected models based on a training material that describes the overall model structure and literature about climate models and the performance of hydrological models for the present period. The expert elicitation process follows a three-stage approach, with two individual rounds of elicitation of probabilities and a final group consensus, where the experts are separated into two different community groups: a climate and a hydrological modeller group. The dialogue reveals that under the conditions of the study, most climate modellers prefer the equal weighting of ensemble members, whereas hydrological-impact modellers in general are more open for assigning weights to different models in a multi-model ensemble, based on model performance and model structure. Climate experts are more open to exclude models, if obviously flawed, than to put weights on selected models in a relatively small ensemble. The study shows that expert elicitation can be an efficient way to assign weights to different hydrological models and thereby reduce the uncertainty in climate impact. However, for the climate model ensemble, comprising seven models, the elicitation in the format of this study could only re-establish a uniform weight between climate models.

    Consulter sur hess.copernicus.org
  • Martel, J. ‐L., Brissette, F., Troin, M., Arsenault, R., Chen, J., Su, T., & Lucas‐Picher, P. (2022). CMIP5 and CMIP6 Model Projection Comparison for Hydrological Impacts Over North America. Geophysical Research Letters, 49(15), e2022GL098364. https://doi.org/10.1029/2022GL098364

    Abstract A warmer climate impacts streamflows and these changes need to be quantified to assess future risk, vulnerability, and to implement efficient adaptation measures. The climate simulations from the fifth phase of the Coupled Model Intercomparison Project (CMIP5), which have been the basis of most such assessments over the past decade, are being gradually superseded by the more recent Coupled Model Intercomparison Project Phase 6 (CMIP6). Our study portrays the added value of the CMIP6 ensemble over CMIP5 in a first North America wide comparison using 3,107 catchments. Results show a reduced spread of the CMIP6 ensemble compared to the CMIP5 ensemble for temperature and precipitation projections. In terms of flow indicators, the CMIP6 driven hydrological projections result in a smaller spread of future mean and high flow values, except for mountainous areas. Overall, we assess that the CMIP6 ensemble provides a narrower band of uncertainty of future climate projections, bringing more confidence for hydrological impact studies. , Plain Language Summary Greenhouse gas emissions are causing the climate to warm significantly, which in turn impacts flows in rivers worldwide. To adapt to these changes, it is essential to quantify them and assess future risk and vulnerability. Climate models are the primary tools used to achieve this. The main data set that provides scientists with state‐of‐the‐art climate model simulations is known as the Coupled Model Intercomparison Project (CMIP). The fifth phase of that project (CMIP5) has been used over the past decade in multiple hydrological studies to assess the impacts of climate change on streamflow. The more recent sixth phase (CMIP6) has started to generate projections, which brings the following question: is it necessary to update the hydrological impact studies performed using CMIP5 with the new CMIP6 models? To answer this question, a comparison between CMIP5 and CMIP6 using 3,107 catchments over North America was conducted. Results show that there is less spread in temperature and precipitation projections for CMIP6. This translates into a smaller spread of future mean, high and low flow values, except for mountainous areas. Overall, we assess that using the CMIP6 data set would provide a more concerted range of future climate projections, leading to more confident hydrological impact studies. , Key Points A comparison of hydrological impacts using Coupled Model Intercomparison Project version 5 (CMIP5) and Coupled Model Intercomparison Project Phase 6 (CMIP6) ensembles is performed over 3,107 catchments in North America The CMIP6 ensembles provide a narrower band of uncertainty for hydrological indicators in the future It is recommended to update hydrological impact studies performed using CMIP5 with the CMIP6 ensemble

    Consulter sur agupubs.onlinelibrary.wiley.com
  • Tramblay, Y., Ribes, A., Somot, S., Neppel, L., Lucas-Picher, P., Vinet, F., & Sauquet, E. (2021). Impacts du changement climatique sur les pluies intenses et les crues en Méditerranée. LHB, 107(1), 1–5. https://doi.org/10.1080/00186368.2021.1912971
    Consulter sur www.tandfonline.com
  • Brisson, E., Blahak, U., Lucas-Picher, P., Purr, C., & Ahrens, B. (2021). Contrasting lightning projection using the lightning potential index adapted in a convection-permitting regional climate model. Climate Dynamics, 57(7–8), 2037–2051. https://doi.org/10.1007/s00382-021-05791-z

    Abstract Lightning climate change projections show large uncertainties caused by limited empirical knowledge and strong assumptions inherent to coarse-grid climate modeling. This study addresses the latter issue by implementing and applying the lightning potential index parameterization (LPI) into a fine-grid convection-permitting regional climate model (CPM). This setup takes advantage of the explicit representation of deep convection in CPMs and allows for process-oriented LPI inputs such as vertical velocity within convective cells and coexistence of microphysical hydrometeor types, which are known to contribute to charge separation mechanisms. The LPI output is compared to output from a simpler flash rate parameterization, namely the CAPE $$\times$$ × PREC parameterization, applied in a non-CPM on a coarser grid. The LPI’s implementation into the regional climate model COSMO-CLM successfully reproduces the observed lightning climatology, including its latitudinal gradient, its daily and hourly probability distributions, and its diurnal and annual cycles. Besides, the simulated temperature dependence of lightning reflects the observed dependency. The LPI outperforms the CAPE $$\times$$ × PREC parameterization in all applied diagnostics. Based on this satisfactory evaluation, we used the LPI to a climate change projection under the RCP8.5 scenario. For the domain under investigation centered over Germany, the LPI projects a decrease of $$4.8\%$$ 4.8 % in flash rate by the end of the century, in opposition to a projected increase of $$17.4\%$$ 17.4 % as projected using the CAPE $$\times$$ × PREC parameterization. The future decrease of LPI occurs mostly during the summer afternoons and is related to (i) a change in convection occurrence and (ii) changes in the microphysical mixing. The two parameterizations differ because of different convection occurrences in the CPM and non-CPM and because of changes in the microphysical mixing, which is only represented in the LPI lightning parameterization.

    Consulter sur link.springer.com
  • Lucas‐Picher, P., Argüeso, D., Brisson, E., Tramblay, Y., Berg, P., Lemonsu, A., Kotlarski, S., & Caillaud, C. (2021). Convection ‐permitting modeling with regional climate models: Latest developments and next steps. WIREs Climate Change, 12(6), e731. https://doi.org/10.1002/wcc.731

    Abstract Approximately 10 years ago, convection‐permitting regional climate models (CPRCMs) emerged as a promising computationally affordable tool to produce fine resolution (1–4 km) decadal‐long climate simulations with explicitly resolved deep convection. This explicit representation is expected to reduce climate projection uncertainty related to deep convection parameterizations found in most climate models. A recent surge in CPRCM decadal simulations over larger domains, sometimes covering continents, has led to important insights into CPRCM advantages and limitations. Furthermore, new observational gridded datasets with fine spatial and temporal (~1 km; ~1 h) resolutions have leveraged additional knowledge through evaluations of the added value of CPRCMs. With an improved coordination in the frame of ongoing international initiatives, the production of ensembles of CPRCM simulations is expected to provide more robust climate projections and a better identification of their associated uncertainties. This review paper presents an overview of the methodology to produce CPRCM simulations and the latest research on the related added value in current and future climates. Impact studies that are already taking advantage of these new CPRCM simulations are highlighted. This review paper ends by proposing next steps that could be accomplished to continue exploiting the full potential of CPRCMs. This article is categorized under: Climate Models and Modeling > Earth System Models

    Consulter sur wires.onlinelibrary.wiley.com
  • Lucas‐Picher, P., Lachance‐Cloutier, S., Arsenault, R., Poulin, A., Ricard, S., Turcotte, R., & Brissette, F. (2021). Will Evolving Climate Conditions Increase the Risk of Floods of the Large U.S.‐Canada Transboundary Richelieu River Basin? JAWRA Journal of the American Water Resources Association, 57(1), 32–56. https://doi.org/10.1111/1752-1688.12891

    Abstract In spring 2011, an unprecedented flood hit the complex eastern United States (U.S.)–Canada transboundary Lake Champlain–Richelieu River (LCRR) Basin, destructing properties and inducing negative impacts on agriculture and fish habitats. The damages, covered by the Governments of Canada and the U.S., were estimated to C$90M. This natural disaster motivated the study of mitigation measures to prevent such disasters from reoccurring. When evaluating flood risks, long‐term evolving climate change should be taken into account to adopt mitigation measures that will remain relevant in the future. To assess the impacts of climate change on flood risks of the LCRR basin, three bias‐corrected multi‐resolution ensembles of climate projections for two greenhouse gas concentration scenarios were used to force a state‐of‐the‐art, high‐resolution, distributed hydrological model. The analysis of the hydrological simulations indicates that the 20‐year return period flood (corresponding to a medium flood) should decrease between 8% and 35% for the end of the 21st Century (2070–2099) time horizon and for the high‐emission scenario representative concentration pathway (RCP) 8.5. The reduction in flood risks is explained by a decrease in snow accumulation and an increase in evapotranspiration expected with the future warming of the region. Nevertheless, due to the large climate inter‐annual variability, short‐term flood probabilities should remain similar to those experienced in the recent past.

    Consulter sur onlinelibrary.wiley.com
  • Martel, J.-L., Brissette, F. P., Lucas-Picher, P., Troin, M., & Arsenault, R. (2021). Climate Change and Rainfall Intensity–Duration–Frequency Curves: Overview of Science and Guidelines for Adaptation. Journal of Hydrologic Engineering, 26(10), 03121001. https://doi.org/10.1061/(ASCE)HE.1943-5584.0002122
    Consulter sur ascelibrary.org
  • Lucas‐Picher, P., Arsenault, R., Poulin, A., Ricard, S., Lachance‐Cloutier, S., & Turcotte, R. (2020). Application of a High‐Resolution Distributed Hydrological Model on a U.S.‐Canada Transboundary Basin: Simulation of the Multiyear Mean AnnualHydrograph and 2011 Flood of theRichelieu River Basin. Journal of Advances in Modeling Earth Systems, 12(4), e2019MS001709. https://doi.org/10.1029/2019MS001709

    Abstract During spring 2011, an extreme flood occurred along the Richelieu River located in southern Quebec, Canada. The Richelieu River is the last section of the complex Richelieu basin, which is composed of the large Lake Champlain located in a valley between two large mountains. Previous attempts in reproducing the Richelieu River flow relied on the use of simplified lumped models and showed mixed results. In order to prepare a tool to assess accurately the change of flood recurrences in the future, a state‐of‐the‐art distributed hydrological model was applied over the Richelieu basin. The model setup comprises several novel methods and data sets such as a very high resolution river network, a modern calibration technique considering the net basin supply of Lake Champlain, a new optimization algorithm, and the use of an up‐to‐date meteorological data set to force the model. The results show that the hydrological model is able to satisfactorily reproduce the multiyear mean annual hydrograph and the 2011 flow time series when compared with the observed river flow and an estimation of the Lake Champlain net basin supply. Many factors, such as the quality of the meteorological forcing data, that are affected by the low density of the station network, the steep terrain, and the lake storage effect challenged the simulation of the river flow. Overall, the satisfactory validation of the hydrological model allows to move to the next step, which consists in assessing the impacts of climate change on the recurrence of Richelieu River floods. , Plain Language Summary In order to study the 2011 Richelieu flood and prepare a tool capable of estimating the effects of climate change on the recurrence of floods, a hydrological model is applied over the Richelieu basin. The application of a distributed hydrological model is useful to simulate the flow of all the tributaries of the Richelieu basin. This new model setup stands out from past models due to its distribution in several hydrological units, its high‐resolution river network, the calibration technique, and the high‐resolution weather forcing data set used to drive the model. The model successfully reproduced the 2011 Richelieu River flood and the annual hydrograph. The simulation of the Richelieu flow was challenging due to the contrasted elevation of the Richelieu basin and the presence of the large Lake Champlain that acts as a reservoir and attenuates short‐term fluctuations. Overall, the application was deemed satisfactory, and the tool is ready to assess the impacts of climate change on the recurrence of Richelieu River floods. , Key Points An advanced high‐resolution distributed hydrological model is applied over a U.S.‐Canada transboundary basin The simulated net basin supply of Lake Champlain and the Richelieu River discharge are in good agreement with observations of the 2011 flood The flow simulation is challenging due to the topographic and meteorological complexities of the basin and uncertainties in the observations

    Consulter sur agupubs.onlinelibrary.wiley.com
  • Glisan, J. M., Jones, R., Lennard, C., Castillo Pérez, N. I., Lucas‐Picher, P., Rinke, A., Solman, S., & Gutowski, W. J. (2019). A metrics‐based analysis of seasonal daily precipitation and near‐surface temperature within seven Coordinated Regional Climate Downscaling Experiment domains. Atmospheric Science Letters, 20(5), e897. https://doi.org/10.1002/asl.897

    We compare ensemble mean daily precipitation and near‐surface temperatures from regional climate model simulations over seven Coordinated Regional Climate Downscaling Experiment domains for the winter and summer seasons. We use Taylor diagrams to show the domain‐wide pattern similarity between the model ensemble and the observational data sets. We use the Climatic Research Unit (CRU) and the University of Delaware gridded observations and ERA‐Interim reanalysis data as an additional observationally based estimate of historical climatology. Taylor diagrams determine the relative skill of the seven sets of simulations and quantify these results in terms of center pattern root‐mean square error and correlation coefficient. Results suggest that there is good agreement between the models and the CRU, in terms of their respective seasonal cycles, as shown in Taylor diagrams and bias plots. There is also good agreement between both gridded observation sets. In addition, downscaled ERA‐Interim precipitation is closer to observations than raw ERA‐Interim precipitation. Domains located in the low latitudes and those having high topography appear to have larger biases, especially precipitation.

    Consulter sur rmets.onlinelibrary.wiley.com
  • Takhsha, M., Nikiéma, O., Lucas-Picher, P., Laprise, R., Hernández-Díaz, L., & Winger, K. (2018). Dynamical downscaling with the fifth-generation Canadian regional climate model (CRCM5) over the CORDEX Arctic domain: effect of large-scale spectral nudging and of empirical correction of sea-surface temperature. Climate Dynamics, 51(1–2), 161–186. https://doi.org/10.1007/s00382-017-3912-6
    Consulter sur link.springer.com
  • Essou, G. R. C., Brissette, F., & Lucas-Picher, P. (2017). The Use of Reanalyses and Gridded Observations as Weather Input Data for a Hydrological Model: Comparison of Performances of Simulated River Flows Based on the Density of Weather Stations. Journal of Hydrometeorology, 18(2), 497–513. https://doi.org/10.1175/JHM-D-16-0088.1

    Abstract Precipitation forcing is critical for hydrological modeling as it has a strong impact on the accuracy of simulated river flows. In general, precipitation data used in hydrological modeling are provided by weather stations. However, in regions with sparse weather station coverage, the spatial interpolation of the individual weather stations provides a rough approximation of the real precipitation fields. In such regions, precipitation from interpolated weather stations is generally considered unreliable for hydrological modeling. Precipitation estimates from reanalyses could represent an interesting alternative in regions where the weather station density is low. This article compares the performances of river flows simulated by a watershed model using precipitation and temperature estimates from reanalyses and gridded observations. The comparison was carried out based on the density of surface weather stations for 316 Canadian watersheds located in three climatic regions. Three state-of-the-art atmospheric reanalyses—ERA-Interim, CFSR, and MERRA—and one gridded observations database over Canada—Natural Resources Canada (NRCan)—were used. Results showed that the Nash–Sutcliffe values of simulated river flows using precipitation and temperature data from CFSR and NRCan were generally equivalent regardless of the weather station density. ERA-Interim and MERRA performed significantly better than NRCan for watersheds with weather station densities of less than 1 station per 1000 km2 in the mountainous region. Overall, these results indicate that for hydrological modeling in regions with high spatial variability of precipitation such as mountainous regions, reanalyses perform better than gridded observations when the weather station density is low.

    Consulter sur journals.ametsoc.org
  • Chen, J., Brissette, F. P., Lucas-Picher, P., & Caya, D. (2017). Impacts of weighting climate models for hydro-meteorological climate change studies. Journal of Hydrology, 549, 534–546. https://doi.org/10.1016/j.jhydrol.2017.04.025
    Consulter sur linkinghub.elsevier.com
  • 1
  • 2
  • 3
  • Page 1 de 3
RIS

Format recommandé pour la plupart des logiciels de gestion de références bibliographiques

BibTeX

Format recommandé pour les logiciels spécialement conçus pour BibTeX

Flux web personnalisé
Dernière mise à jour depuis la base de données : 08/06/2025 05:00 (UTC)

Explorer

Auteur·e·s

  • Lucas-Picher, Philippe
  • Di Luca, Alejandro (1)
  • Thériault, Julie M. (1)

Type de ressource

  • Article de revue (44)
  • Chapitre de livre (1)

Année de publication

  • Entre 2000 et 2025
    • Entre 2000 et 2009 (5)
      • 2003 (1)
      • 2008 (4)
    • Entre 2010 et 2019 (24)
      • 2011 (2)
      • 2012 (3)
      • 2013 (4)
      • 2014 (2)
      • 2015 (2)
      • 2016 (5)
      • 2017 (4)
      • 2018 (1)
      • 2019 (1)
    • Entre 2020 et 2025 (16)
      • 2020 (1)
      • 2021 (5)
      • 2022 (2)
      • 2023 (3)
      • 2024 (5)

Explorer

UQAM - Université du Québec à Montréal

  • Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  • bibliotheques@uqam.ca

Accessibilité Web