Votre recherche
Résultats 3 ressources
-
Abstract. ICESat has provided surface elevation measurements of the ice sheets since the launch in January 2003, resulting in a unique dataset for monitoring the changes of the cryosphere. Here, we present a novel method for determining the mass balance of the Greenland ice sheet, derived from ICESat altimetry data. Three different methods for deriving elevation changes from the ICESat altimetry dataset are used. This multi-method approach provides a method to assess the complexity of deriving elevation changes from this dataset. The altimetry alone can not provide an estimate of the mass balance of the Greenland ice sheet. Firn dynamics and surface densities are important factors that contribute to the mass change derived from remote-sensing altimetry. The volume change derived from ICESat data is corrected for changes in firn compaction over the observation period, vertical bedrock movement and an intercampaign elevation bias in the ICESat data. Subsequently, the corrected volume change is converted into mass change by the application of a simple surface density model, in which some of the ice dynamics are accounted for. The firn compaction and density models are driven by the HIRHAM5 regional climate model, forced by the ERA-Interim re-analysis product, at the lateral boundaries. We find annual mass loss estimates of the Greenland ice sheet in the range of 191 ± 23 Gt yr−1 to 240 ± 28 Gt yr−1 for the period October 2003 to March 2008. These results are in good agreement with several other studies of the Greenland ice sheet mass balance, based on different remote-sensing techniques.
-
Abstract Model simulations of the Greenland ice sheet contribution to 21st-century sea-level rise are performed with a state-of-the-art ice-sheet model (Parallel Ice Sheet Model (PISM)). The climate-forcing fields are obtained from the European Union’s Seventh Framework Programme project ice2sea, in which three regional climate models are used to dynamically downscale two scenarios (A1B and E1) from two general circulation models (ECHAM5 and HadCM3). To assess the sensitivity of the projections to the model initial state, four initialization methods are applied. In these experiments, the simulated contribution to sea-level rise by 2100 ranges from an equivalent of 0.2 to 6.8 cm. The largest uncertainties arise from different formulations of the regional climate models (0.8–3.9 cm) and applied scenarios (0.65–1.9 cm), but an important source of uncertainty is the initialization method (0.1–0.8 cm). These model simulations do not account for the recently observed acceleration of ice streams and consequent thinning rates, the changing ice discharge that may result from the spatial and temporal variability of ocean forcing, or the feedback occurring between ice-sheet elevation changes and climate forcing. Thus the results should be considered the lower limit of Greenland ice sheet contributions to sea-level rise, until such processes have been integrated into large-scale ice-sheet models.
-
Abstract. Four high-resolution regional climate models (RCMs) have been set up for the area of Greenland, with the aim of providing future projections of Greenland ice sheet surface mass balance (SMB), and its contribution to sea level rise, with greater accuracy than is possible from coarser-resolution general circulation models (GCMs). This is the first time an intercomparison has been carried out of RCM results for Greenland climate and SMB. Output from RCM simulations for the recent past with the four RCMs is evaluated against available observations. The evaluation highlights the importance of using a detailed snow physics scheme, especially regarding the representations of albedo and meltwater refreezing. Simulations with three of the RCMs for the 21st century using SRES scenario A1B from two GCMs produce trends of between −5.5 and −1.1 Gt yr−2 in SMB (equivalent to +0.015 and +0.003 mm sea level equivalent yr−2), with trends of smaller magnitude for scenario E1, in which emissions are mitigated. Results from one of the RCMs whose present-day simulation is most realistic indicate that an annual mean near-surface air temperature increase over Greenland of ~ 2°C would be required for the mass loss to increase such that it exceeds accumulation, thereby causing the SMB to become negative, which has been suggested as a threshold beyond which the ice sheet would eventually be eliminated.