Accéder au contenu Accéder au menu principal Accéder à la recherche
Accéder au contenu Accéder au menu principal
UQAM logo
Page d'accueil de l'UQAM Étudier à l'UQAM Bottin du personnel Carte du campus Bibliothèques Pour nous joindre

Service des bibliothèques

Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
UQAM logo
Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  • Bibliographie
  • Accueil
  1. Vitrine des bibliographies
  2. Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  3. Résultats
  • Accueil

Votre recherche

Réinitialiser la recherche

Aide

L’interface de recherche est composée de trois sections : Rechercher, Explorer et Résultats. Celles-ci sont décrites en détail ci-dessous.

Vous pouvez lancer une recherche aussi bien à partir de la section Rechercher qu’à partir de la section Explorer.

Rechercher

Cette section affiche vos critères de recherche courants et vous permet de soumettre des mots-clés à chercher dans la bibliographie.

  • Chaque nouvelle soumission ajoute les mots-clés saisis à la liste des critères de recherche.
  • Pour lancer une nouvelle recherche plutôt qu’ajouter des mots-clés à la recherche courante, utilisez le bouton Réinitialiser la recherche, puis entrez vos mots-clés.
  • Pour remplacer un mot-clé déjà soumis, veuillez d’abord le retirer en décochant sa case à cocher, puis soumettre un nouveau mot-clé.
  • Vous pouvez contrôler la portée de votre recherche en choisissant où chercher. Les options sont :
    • Partout : repère vos mots-clés dans tous les champs des références bibliographiques ainsi que dans le contenu textuel des documents disponibles.
    • Dans les auteurs ou contributeurs : repère vos mots-clés dans les noms d’auteurs ou de contributeurs.
    • Dans les titres : repère vos mots-clés dans les titres.
    • Dans tous les champs : repère vos mots-clés dans tous les champs des notices bibliographiques.
    • Dans les documents : repère vos mots-clés dans le contenu textuel des documents disponibles.
  • Vous pouvez utiliser les opérateurs booléens avec vos mots-clés :
    • ET : repère les références qui contiennent tous les termes fournis. Ceci est la relation par défaut entre les termes séparés d’un espace. Par exemple, a b est équivalent à a ET b.
    • OU : repère les références qui contiennent n’importe lequel des termes fournis. Par exemple, a OU b.
    • SAUF : exclut les références qui contiennent le terme fourni. Par exemple, SAUF a.
    • Les opérateurs booléens doivent être saisis en MAJUSCULES.
  • Vous pouvez faire des groupements logiques (avec les parenthèses) pour éviter les ambiguïtés lors de la combinaison de plusieurs opérateurs booléens. Par exemple, (a OU b) ET c.
  • Vous pouvez demander une séquence exacte de mots (avec les guillemets droits), par exemple "a b c". Par défaut la différence entre les positions des mots est de 1, ce qui signifie qu’une référence sera repérée si elle contient les mots et qu’ils sont consécutifs. Une distance maximale différente peut être fournie (avec le tilde), par exemple "a b"~2 permet jusqu’à un terme entre a et b, ce qui signifie que la séquence a c b pourrait être repérée aussi bien que a b.
  • Vous pouvez préciser que certains termes sont plus importants que d’autres (avec l’accent circonflexe). Par exemple, a^2 b c^0.5 indique que a est deux fois plus important que b dans le calcul de pertinence des résultats, tandis que c est de moitié moins important. Ce type de facteur peut être appliqué à un groupement logique, par exemple (a b)^3 c.
  • La recherche par mots-clés est insensible à la casse et les accents et la ponctuation sont ignorés.
  • Les terminaisons des mots sont amputées pour la plupart des champs, tels le titre, le résumé et les notes. L’amputation des terminaisons vous évite d’avoir à prévoir toutes les formes possibles d’un mot dans vos recherches. Ainsi, les termes municipal, municipale et municipaux, par exemple, donneront tous le même résultat. L’amputation des terminaisons n’est pas appliquée au texte des champs de noms, tels auteurs/contributeurs, éditeur, publication.

Explorer

Cette section vous permet d’explorer les catégories associées aux références.

  • Les catégories peuvent servir à affiner votre recherche. Cochez une catégorie pour l’ajouter à vos critères de recherche. Les résultats seront alors restreints aux références qui sont associées à cette catégorie.
  • Dé-cochez une catégorie pour la retirer de vos critères de recherche et élargir votre recherche.
  • Les nombres affichés à côté des catégories indiquent combien de références sont associées à chaque catégorie considérant les résultats de recherche courants. Ces nombres varieront en fonction de vos critères de recherche, de manière à toujours décrire le jeu de résultats courant. De même, des catégories et des facettes entières pourront disparaître lorsque les résultats de recherche ne contiennent aucune référence leur étant associées.
  • Une icône de flèche () apparaissant à côté d’une catégorie indique que des sous-catégories sont disponibles. Vous pouvez appuyer sur l’icône pour faire afficher la liste de ces catégories plus spécifiques. Par la suite, vous pouvez appuyer à nouveau pour masquer la liste. L’action d’afficher ou de masquer les sous-catégories ne modifie pas vos critères de recherche; ceci vous permet de rapidement explorer l’arborescence des catégories, si désiré.

Résultats

Cette section présente les résultats de recherche. Si aucun critère de recherche n’a été fourni, elle montre toute la bibliographie (jusqu’à 20 références par page).

  • Chaque référence de la liste des résultats est un hyperlien vers sa notice bibliographique complète. À partir de la notice, vous pouvez continuer à explorer les résultats de recherche en naviguant vers les notices précédentes ou suivantes de vos résultats de recherche, ou encore retourner à la liste des résultats.
  • Des hyperliens supplémentaires, tels que Consulter le document ou Consulter sur [nom d’un site web], peuvent apparaître sous un résultat de recherche. Ces liens vous fournissent un accès rapide à la ressource, des liens que vous trouverez également dans la notice bibliographique.
  • Le bouton Résumés vous permet d’activer ou de désactiver l’affichage des résumés dans la liste des résultats de recherche. Toutefois, activer l’affichage des résumés n’aura aucun effet sur les résultats pour lesquels aucun résumé n’est disponible.
  • Diverses options sont fournies pour permettre de contrôler l’ordonnancement les résultats de recherche. L’une d’elles est l’option de tri par Pertinence, qui classe les résultats du plus pertinent au moins pertinent. Le score utilisé à cette fin prend en compte la fréquence des mots ainsi que les champs dans lesquels ils apparaissent. Par exemple, si un terme recherché apparaît fréquemment dans une référence ou est l’un d’un très petit nombre de termes utilisé dans cette référence, cette référence aura probablement un score plus élevé qu’une autre où le terme apparaît moins fréquemment ou qui contient un très grand nombre de mots. De même, le score sera plus élevé si un terme est rare dans l’ensemble de la bibliographie que s’il est très commun. De plus, si un terme de recherche apparaît par exemple dans le titre d’une référence, le score de cette référence sera plus élevé que s’il apparaissait dans un champ moins important tel le résumé.
  • Le tri par Pertinence n’est disponible qu’après avoir soumis des mots-clés par le biais de la section Rechercher.
  • Les catégories sélectionnées dans la section Explorer n’ont aucun effet sur le tri par pertinence. Elles ne font que filtrer la liste des résultats.
Auteur·e·s
  • Peng, Changhui
Année de publication
  • Entre 2000 et 2025
    • Entre 2020 et 2025
      • 2023

Résultats 37 ressources

Date décroissanteDate croissanteAuteur A-ZAuteur Z-ATitre A-ZTitre Z-A
  • 1
  • 2
  • Page 1 de 2
Résumés
  • Zhu, S., Tang, J., Zhou, X., Li, P., Liu, Z., Zhang, C., Zou, Z., Li, T., & Peng, C. (2023). Research progress, challenges, and prospects of PM2.5 concentration estimation using satellite data. Environmental Reviews, 31(4), 605–631. https://doi.org/10.1139/er-2022-0125

    Satellite data are vital for understanding the large-scale spatial distribution of particulate matter (PM 2.5 ) due to their low cost, wide coverage, and all-weather capability. Estimation of PM 2.5 using satellite aerosol optical depth (AOD) products is a popular method. In this paper, we review the PM 2.5 estimation process based on satellite AOD data in terms of data sources (i.e., inversion algorithms, data sets, and interpolation methods), estimation models (i.e., statistical regression, chemical transport models, machine learning, and combinatorial analysis), and modeling validation (i.e., four types of cross-validation (CV) methods). We found that the accuracy of time-based CV is lower than others. We found significant differences in modeling accuracy between different seasons ( p < 0.01) and different spatial resolutions ( p < 0.01). We explain these phenomena in this article. Finally, we summarize the research process, present challenges, and future directions in this field. We opine that low-cost mobile devices combined with transfer learning or hybrid modeling offer research opportunities in areas with limited PM 2.5 monitoring stations and historical PM 2.5 estimation. These methods can be a good choice for air pollution estimation in developing countries. The purpose of this study is to provide a basic framework for future researchers to conduct relevant research, enabling them to understand current research progress and future research directions.

    Consulter sur cdnsciencepub.com
  • Zhu, Q., Chen, H., Peng, C., Liu, J., Piao, S., He, J.-S., Wang, S., Zhao, X., Zhang, J., Fang, X., Jin, J., Yang, Q.-E., Ren, L., & Wang, Y. (2023). An early warning signal for grassland degradation on the Qinghai-Tibetan Plateau. Nature Communications, 14(1), 6406. https://doi.org/10.1038/s41467-023-42099-4

    Abstract Intense grazing may lead to grassland degradation on the Qinghai-Tibetan Plateau, but it is difficult to predict where this will occur and to quantify it. Based on a process-based ecosystem model, we define a productivity-based stocking rate threshold that induces extreme grassland degradation to assess whether and where the current grazing activity in the region is sustainable. We find that the current stocking rate is below the threshold in ~80% of grassland areas, but in 55% of these grasslands the stocking rate exceeds half the threshold. According to our model projections, positive effects of climate change including elevated CO 2 can partly offset negative effects of grazing across nearly 70% of grasslands on the Plateau, but only in areas below the stocking rate threshold. Our analysis suggests that stocking rate that does not exceed 60% (within 50% to 70%) of the threshold may balance human demands with grassland protection in the face of climate change.

    Consulter sur www.nature.com
  • Liu, H., Li, P., Peng, C., Liu, C., Zhou, X., Deng, Z., Zhang, C., & Liu, Z. (2023). Application of climate change scenarios in the simulation of forest ecosystems: an overview. Environmental Reviews, 31(3), 565–588. https://doi.org/10.1139/er-2022-0111

    Climate change scenarios established by the Intergovernmental Panel on Climate Change have developed a significant tool for analyzing, modeling, and predicting future climate change impacts in different research fields after more than 30 years of development and refinement. In the wake of future climate change, the changes in forest structure and functions have become a frontier and focal area of global change research. This study mainly reviews and synthesizes climate change scenarios and their applications in forest ecosystem research over the past decade. These applications include changes in (1) forest structure and spatial vegetation distribution, (2) ecosystem structure, (3) ecosystem services, and (4) ecosystem stability. Although climate change scenarios are useful for predicting future climate change impacts on forest ecosystems, the accuracy of model simulations needs to be further improved. Based on existing studies, climate change scenarios are used in future simulation applications to construct a biomonitoring network platform integrating observations and predictions for better conservation of species diversity.

    Consulter sur cdnsciencepub.com
  • Ito, A., Li, T., Qin, Z., Melton, J. R., Tian, H., Kleinen, T., Zhang, W., Zhang, Z., Joos, F., Ciais, P., Hopcroft, P. O., Beerling, D. J., Liu, X., Zhuang, Q., Zhu, Q., Peng, C., Chang, K. ‐Y., Fluet‐Chouinard, E., McNicol, G., … Zhu, Q. (2023). Cold‐Season Methane Fluxes Simulated by GCP‐CH4 Models. Geophysical Research Letters, 50(14), e2023GL103037. https://doi.org/10.1029/2023GL103037

    Abstract Cold‐season methane (CH 4 ) emissions may be poorly constrained in wetland models. We examined cold‐season CH 4 emissions simulated by 16 models participating in the Global Carbon Project model intercomparison and analyzed temporal and spatial patterns in simulation results using prescribed inundation data for 2000–2020. Estimated annual CH 4 emissions from northern (>60°N) wetlands averaged 10.0 ± 5.5 Tg CH 4  yr −1 . While summer CH 4 emissions were well simulated compared to in‐situ flux measurement observations, the models underestimated CH 4 during September to May relative to annual total (27 ± 9%, compared to 45% in observations) and substantially in the months with subzero air temperatures (5 ± 5%, compared to 27% in observations). Because of winter warming, nevertheless, the contribution of cold‐season emissions was simulated to increase at 0.4 ± 0.8% decade −1 . Different parameterizations of processes, for example, freezing–thawing and snow insulation, caused conspicuous variability among models, implying the necessity of model refinement. , Plain Language Summary Wetlands in the northern high latitudes are a major source of methane (CH 4 ) to the atmosphere, mainly during the warm season. Previously, models have assumed that cold‐season CH 4 emissions are low, but recent observations suggest high‐latitude wetlands can be substantial sources even in winter. We compared CH 4 emissions simulated by 16 state‐of‐the‐art wetland models, participating in a model intercomparison project with a focus on the cold‐season in northern wetlands. The model simulations indicated that nearly one third of annual emissions were simulated to occur from September to May, and CH 4 emissions to the atmosphere were not negligible even under freezing air temperatures, although the results differed greatly among the models. However, field studies suggest cold‐season emissions account for an even larger fraction of annual emissions. These results highlight the contribution of cold‐season emissions to the annual CH 4 budget, which future climatic warming is expected to affect severely, and they also show that simulations of cold‐season CH 4 emissions from wetlands need to be improved. , Key Points Cold‐season methane (CH 4 ) emissions simulated by 16 Global Carbon Project‐CH 4 wetland models were analyzed Most models underestimate the cold‐season emissions in comparison with observational data Further model improvement by including cold‐season processes is required to reduce the model bias and uncertainty

    Consulter sur agupubs.onlinelibrary.wiley.com
  • Deng, L., Shangguan, Z., Bell, S. M., Soromotin, A. V., Peng, C., An, S., Wu, X., Xu, X., Wang, K., Li, J., Tang, Z., Yan, W., Zhang, F., Li, J., Wu, J., & Kuzyakov, Y. (2023). Carbon in Chinese grasslands: meta-analysis and theory of grazing effects. Carbon Research, 2(1), 19. https://doi.org/10.1007/s44246-023-00051-7

    Abstract Globally, livestock grazing is an important management factor influencing soil degradation, soil health and carbon (C) stocks of grassland ecosystems. However, the effects of grassland types, grazing intensity and grazing duration on C stocks are unclear across large geographic scales. To provide a more comprehensive assessment of how grazing drives ecosystem C stocks in grasslands, we compiled and analyzed data from 306 studies featuring four grassland types across China: desert steppes, typical steppes, meadow steppes and alpine steppes. Light grazing was the best management practice for desert steppes (< 2 sheep ha −1 ) and typical steppes (3 to 4 sheep ha −1 ), whereas medium grazing pressure was optimal for meadow steppes (5 to 6 sheep ha −1 ) and alpine steppes (7 to 8 sheep ha −1 ) leading to the highest ecosystem C stocks under grazing. Plant biomass (desert steppes) and soil C stocks (meadow steppes) increased under light or medium grazing, confirming the ‘ intermediate disturbance hypothesis ’. Heavy grazing decreased all C stocks regardless of grassland ecosystem types, approximately 1.4 Mg ha −1 per year for the whole ecosystem. The regrowth and regeneration of grasslands in response to grazing intensity (i.e., grazing optimization ) depended on grassland types and grazing duration. In conclusion, grassland grazing is a double-edged sword. On the one hand, proper management (light or medium grazing) can maintain and even increase C stocks above- and belowground, and increase the harvested livestock products from grasslands. On the other hand, human-induced overgrazing can lead to rapid degradation of vegetation and soils, resulting in significant carbon loss and requiring long-term recovery. Grazing regimes (i.e., intensity and duration applied) must consider specific grassland characteristics to ensure stable productivity rates and optimal impacts on ecosystem C stocks. Graphical Abstract

    Consulter sur link.springer.com
  • Casas-Ruiz, J. P., Bodmer, P., Bona, K. A., Butman, D., Couturier, M., Emilson, E. J. S., Finlay, K., Genet, H., Hayes, D., Karlsson, J., Paré, D., Peng, C., Striegl, R., Webb, J., Wei, X., Ziegler, S. E., & Del Giorgio, P. A. (2023). Integrating terrestrial and aquatic ecosystems to constrain estimates of land-atmosphere carbon exchange. Nature Communications, 14(1), 1571. https://doi.org/10.1038/s41467-023-37232-2

    Abstract In this Perspective, we put forward an integrative framework to improve estimates of land-atmosphere carbon exchange based on the accumulation of carbon in the landscape as constrained by its lateral export through rivers. The framework uses the watershed as the fundamental spatial unit and integrates all terrestrial and aquatic ecosystems as well as their hydrologic carbon exchanges. Application of the framework should help bridge the existing gap between land and atmosphere-based approaches and offers a platform to increase communication and synergy among the terrestrial, aquatic, and atmospheric research communities that is paramount to advance landscape carbon budget assessments.

    Consulter sur www.nature.com
  • Qu, R., Liu, G., Yue, M., Wang, G., Peng, C., Wang, K., & Gao, X. (2023). Soil temperature, microbial biomass and enzyme activity are the critical factors affecting soil respiration in different soil layers in Ziwuling Mountains, China. Frontiers in Microbiology, 14, 1105723. https://doi.org/10.3389/fmicb.2023.1105723

    Soil microorganisms are critical biological indicators for evaluating soil health and play a vital role in carbon (C)-climate feedback. In recent years, the accuracy of models in terms of predicting soil C pools has been improved by considering the involvement of microbes in the decomposition process in ecosystem models, but the parameter values of these models have been assumed by researchers without combining observed data with the models and without calibrating the microbial decomposition models. Here, we conducted an observational experiment from April 2021 to July 2022 in the Ziwuling Mountains, Loess Plateau, China, to explore the main influencing factors of soil respiration (R S ) and determine which parameters can be incorporated into microbial decomposition models. The results showed that the R S rate is significantly correlated with soil temperature (T S ) and moisture (M S ), indicating that T S increases soil C loss. We attributed the non-significant correlation between R S and soil microbial biomass carbon (MBC) to variations in microbial use efficiency, which mitigated ecosystem C loss by reducing the ability of microorganisms to decompose organic resources at high temperatures. The structural equation modeling (SEM) results demonstrated that T S , microbial biomass, and enzyme activity are crucial factors affecting soil microbial activity. Our study revealed the relations between T S , microbial biomass, enzyme activity, and R S , which had important scientific implications for constructing microbial decomposition models that predict soil microbial activity under climate change in the future. To better understand the relationship between soil dynamics and C emissions, it will be necessary to incorporate climate data as well as R S and microbial parameters into microbial decomposition models, which will be important for soil conservation and reducing soil C loss in the Loess Plateau.

    Consulter sur www.frontiersin.org
  • Chang, K., Riley, W. J., Collier, N., McNicol, G., Fluet‐Chouinard, E., Knox, S. H., Delwiche, K. B., Jackson, R. B., Poulter, B., Saunois, M., Chandra, N., Gedney, N., Ishizawa, M., Ito, A., Joos, F., Kleinen, T., Maggi, F., McNorton, J., Melton, J. R., … Zhuang, Q. (2023). Observational constraints reduce model spread but not uncertainty in global wetland methane emission estimates. Global Change Biology, 29(15), 4298–4312. https://doi.org/10.1111/gcb.16755

    Abstract The recent rise in atmospheric methane (CH 4 ) concentrations accelerates climate change and offsets mitigation efforts. Although wetlands are the largest natural CH 4 source, estimates of global wetland CH 4 emissions vary widely among approaches taken by bottom‐up (BU) process‐based biogeochemical models and top‐down (TD) atmospheric inversion methods. Here, we integrate in situ measurements, multi‐model ensembles, and a machine learning upscaling product into the International Land Model Benchmarking system to examine the relationship between wetland CH 4 emission estimates and model performance. We find that using better‐performing models identified by observational constraints reduces the spread of wetland CH 4 emission estimates by 62% and 39% for BU‐ and TD‐based approaches, respectively. However, global BU and TD CH 4 emission estimate discrepancies increased by about 15% (from 31 to 36 TgCH 4 year −1 ) when the top 20% models were used, although we consider this result moderately uncertain given the unevenly distributed global observations. Our analyses demonstrate that model performance ranking is subject to benchmark selection due to large inter‐site variability, highlighting the importance of expanding coverage of benchmark sites to diverse environmental conditions. We encourage future development of wetland CH 4 models to move beyond static benchmarking and focus on evaluating site‐specific and ecosystem‐specific variabilities inferred from observations.

    Consulter sur onlinelibrary.wiley.com
  • Cheng, J., Huang, C., Gan, X., Peng, C., & Deng, L. (2023). Can forest carbon sequestration offset industrial CO2 emissions? A case study of Hubei Province, China. Journal of Cleaner Production, 426, 139147. https://doi.org/10.1016/j.jclepro.2023.139147
    Consulter sur linkinghub.elsevier.com
  • Feng, H., Guo, J., Peng, C., Kneeshaw, D., Roberge, G., Pan, C., Ma, X., Zhou, D., & Wang, W. (2023). Nitrogen addition promotes terrestrial plants to allocate more biomass to aboveground organs: A global meta‐analysis. Global Change Biology, 29(14), 3970–3989. https://doi.org/10.1111/gcb.16731

    Abstract A significant increase in reactive nitrogen (N) added to terrestrial ecosystems through agricultural fertilization or atmospheric deposition is considered to be one of the most widespread drivers of global change. Modifying biomass allocation is one primary strategy for maximizing plant growth rate, survival, and adaptability to various biotic and abiotic stresses. However, there is much uncertainty as to whether and how plant biomass allocation strategies change in response to increased N inputs in terrestrial ecosystems. Here, we synthesized 3516 paired observations of plant biomass and their components related to N additions across terrestrial ecosystems worldwide. Our meta‐analysis reveals that N addition (ranging from 1.08 to 113.81 g m −2  year −1 ) increased terrestrial plant biomass by 55.6% on average. N addition has increased plant stem mass fraction, shoot mass fraction, and leaf mass fraction by 13.8%, 12.9%, and 13.4%, respectively, but with an associated decrease in plant reproductive mass (including flower and fruit biomass) fraction by 3.4%. We further documented a reduction in plant root‐shoot ratio and root mass fraction by 27% (21.8%–32.1%) and 14.7% (11.6%–17.8%), respectively, in response to N addition. Meta‐regression results showed that N addition effects on plant biomass were positively correlated with mean annual temperature, soil available phosphorus, soil total potassium, specific leaf area, and leaf area per plant. Nevertheless, they were negatively correlated with soil total N, leaf carbon/N ratio, leaf carbon and N content per leaf area, as well as the amount and duration of N addition. In summary, our meta‐analysis suggests that N addition may alter terrestrial plant biomass allocation strategies, leading to more biomass being allocated to aboveground organs than belowground organs and growth versus reproductive trade‐offs. At the global scale, leaf functional traits may dictate how plant species change their biomass allocation pattern in response to N addition.

    Consulter sur onlinelibrary.wiley.com
  • Feng, H., Guo, J., Peng, C., Ma, X., Kneeshaw, D., Chen, H., Liu, Q., Liu, M., Hu, C., & Wang, W. (2023). Global estimates of forest soil methane flux identify a temperate and tropical forest methane sink. Geoderma, 429, 116239. https://doi.org/10.1016/j.geoderma.2022.116239
    Consulter sur linkinghub.elsevier.com
  • Guo, J., Feng, H., Peng, C., Chen, H., Xu, X., Ma, X., Li, L., Kneeshaw, D., Ruan, H., Yang, H., & Wang, W. (2023). Global Climate Change Increases Terrestrial Soil CH4 Emissions. Global Biogeochemical Cycles, 37(1), e2021GB007255. https://doi.org/10.1029/2021GB007255

    Abstract Increased greenhouse gas emissions are causing unprecedented climate change, which is, in turn, altering emissions and removals (referring to the oxidation of atmospheric CH 4 by methanotrophs within the soil) of the atmospheric CH 4 in terrestrial ecosystems. In the global CH 4 budget, wetlands are the dominant natural source and upland soils are the primary biological sink. However, it is unclear whether and how the soil CH 4 exchanges across terrestrial ecosystems and the atmosphere will be affected by warming and changes in precipitation patterns. Here, we synthesize 762 observations of in situ soil CH 4 flux data based on the chamber method from the past three decades related to temperature and precipitation changes across major terrestrial ecosystems worldwide. Our meta‐analysis reveals that warming (average warming of +2°C) promotes upland soil CH 4 uptake and wetland soil CH 4 emission. Decreased precipitation (ranging from −100% to −7% of local mean annual precipitation) stimulates upland soil CH 4 uptake. Increased precipitation (ranging from +4% to +94% of local mean annual precipitation) accelerates the upland soil CH 4 emission. By 2100, under the shared socioeconomic pathway with a high radiative forcing level (SSP585), CH 4 emissions from global terrestrial ecosystems will increase by 22.8 ± 3.6 Tg CH 4  yr −1 as an additional CH 4 source, which may be mainly attributed to the increase in precipitation over 30°N latitudes. Our meta‐analysis strongly suggests that future climate change would weaken the natural buffering ability of terrestrial ecosystems on CH 4 fluxes and thus contributes to a positive feedback spiral. , Plain Language Summary This study is the first investigation to include scenarios of CH 4 sink–source transition due to climate change and provides the global estimate of soil CH 4 budgets in natural terrestrial ecosystems in the context of climate change. The enhanced effect of climate change on CH 4 emissions was mainly attributed to increased CH 4 emissions from natural upland ecosystems. Although an increased CH 4 uptake by forest and grassland soils caused by increased temperature and decreased precipitation can offset some part of additional CH 4 sources, the substantial increase of increased precipitation on CH 4 emissions makes these sinks insignificant. These findings highlight that future climate change would weaken the natural buffering ability of terrestrial ecosystems on CH 4 emissions and thus form a positive feedback spiral between methane emissions and climate change. , Key Points This study is the first CH 4 budget investigation to include CH 4 sink‐source transition due to climate change Climate change is estimated to add 22.8 ± 3.6 Tg CH 4  yr −1 emission by 2100 under the high socioeconomic pathway Climate change weakens the buffering capacity of upland soils to CH 4 emissions

    Consulter sur agupubs.onlinelibrary.wiley.com
  • Guo, L., Liu, X., Alatalo, J. M., Wang, C., Xu, J., Yu, H., Chen, J., Yu, Q., Peng, C., Dai, J., & Luedeling, E. (2023). Climatic drivers and ecological implications of variation in the time interval between leaf-out and flowering. Current Biology, 33(16), 3338-3349.e3. https://doi.org/10.1016/j.cub.2023.06.064
    Consulter sur linkinghub.elsevier.com
  • Li, J., Deng, L., Peñuelas, J., Wu, J., Shangguan, Z., Sardans, J., Peng, C., & Kuzyakov, Y. (2023). C:N:P stoichiometry of plants, soils, and microorganisms: Response to altered precipitation. Global Change Biology, 29(24), 7051–7071. https://doi.org/10.1111/gcb.16959

    Abstract Precipitation changes modify C, N, and P cycles, which regulate the functions and structure of terrestrial ecosystems. Although altered precipitation affects above‐ and belowground C:N:P stoichiometry, considerable uncertainties remain regarding plant–microbial nutrient allocation strategies under increased (IPPT) and decreased (DPPT) precipitation. We meta‐analyzed 827 observations from 235 field studies to investigate the effects of IPPT and DPPT on the C:N:P stoichiometry of plants, soils, and microorganisms. DPPT reduced leaf C:N ratio, but increased the leaf and root N:P ratios reflecting stronger decrease of P compared with N mobility in soil under drought. IPPT increased microbial biomass C (+13%), N (+15%), P (26%), and the C:N ratio, whereas DPPT decreased microbial biomass N (−12%) and the N:P ratio. The C:N and N:P ratios of plant leaves were more sensitive to medium DPPT than to IPPT because drought increased plant N content, particularly in humid areas. The responses of plant and soil C:N:P stoichiometry to altered precipitation did not fit the double asymmetry model with a positive asymmetry under IPPT and a negative asymmetry under extreme DPPT. Soil microorganisms were more sensitive to IPPT than to DPPT, but they were more sensitive to extreme DPPT than extreme IPPT, consistent with the double asymmetry model. Soil microorganisms maintained stoichiometric homeostasis, whereas N:P ratios of plants follow that of the soils under altered precipitation. In conclusion, specific N allocation strategies of plants and microbial communities as well as N and P availability in soil critically mediate C:N:P stoichiometry by altered precipitation that need to be considered by prediction of ecosystem functions and C cycling under future climate change scenarios.

    Consulter sur onlinelibrary.wiley.com
  • Li, M., He, N., Xu, L., Peng, C., Chen, H., & Yu, G. (2023). Eco-CCUS: A cost-effective pathway towards carbon neutrality in China. Renewable and Sustainable Energy Reviews, 183, 113512. https://doi.org/10.1016/j.rser.2023.113512
    Consulter sur linkinghub.elsevier.com
  • Liu, L., Tian, J., Wang, H., Xue, D., Huang, X., Wu, N., Wang, M., Xu, X., Peng, C., Wang, Y., & Chen, H. (2023). Stable oxic-anoxic transitional interface is beneficial to retard soil carbon loss in drained peatland. Soil Biology and Biochemistry, 181, 109024. https://doi.org/10.1016/j.soilbio.2023.109024
    Consulter sur linkinghub.elsevier.com
  • Liu, Q., Peng, C., Schneider, R., Cyr, D., Liu, Z., Zhou, X., Du, M., Li, P., Jiang, Z., McDowell, N. G., & Kneeshaw, D. (2023). Vegetation browning: global drivers, impacts, and feedbacks. Trends in Plant Science, 28(9), 1014–1032. https://doi.org/10.1016/j.tplants.2023.03.024
    Consulter sur linkinghub.elsevier.com
  • Liu, Q., Peng, C., Schneider, R., Cyr, D., McDowell, N. G., & Kneeshaw, D. (2023). Drought‐induced increase in tree mortality and corresponding decrease in the carbon sink capacity of Canada’s boreal forests from 1970 to 2020. Global Change Biology, 29(8), 2274–2285. https://doi.org/10.1111/gcb.16599

    Abstract Canada's boreal forests, which occupy approximately 30% of boreal forests worldwide, play an important role in the global carbon budget. However, there is little quantitative information available regarding the spatiotemporal changes in the drought‐induced tree mortality of Canada's boreal forests overall and their associated impacts on biomass carbon dynamics. Here, we develop spatiotemporally explicit estimates of drought‐induced tree mortality and corresponding biomass carbon sink capacity changes in Canada's boreal forests from 1970 to 2020. We show that the average annual tree mortality rate is approximately 2.7%. Approximately 43% of Canada's boreal forests have experienced significantly increasing tree mortality trends (71% of which are located in the western region of the country), and these trends have accelerated since 2002. This increase in tree mortality has resulted in significant biomass carbon losses at an approximate rate of 1.51 ± 0.29 MgC ha −1  year −1 (95% confidence interval) with an approximate total loss of 0.46 ± 0.09 PgC year −1 (95% confidence interval). Under the drought condition increases predicted for this century, the capacity of Canada's boreal forests to act as a carbon sink will be further reduced, potentially leading to a significant positive climate feedback effect.

    Consulter sur onlinelibrary.wiley.com
  • Liu, W., Wang, K., Hao, H., Yan, Y., Zhang, H., Zhang, H., & Peng, C. (2023). Predicting potential climate change impacts of bioenergy from perennial grasses in 2050. Resources, Conservation and Recycling, 190, 106818. https://doi.org/10.1016/j.resconrec.2022.106818
    Consulter sur linkinghub.elsevier.com
  • Liu, W., Zhang, D., Tian, J., Yu, F., Xie, Y., Cheng, S., Li, Q., Li, W., Peng, C., & Yan, Y. (2023). Climate change mitigation potential of kitchen waste utilization in China for combined heat and power production. Science of The Total Environment, 888, 164165. https://doi.org/10.1016/j.scitotenv.2023.164165
    Consulter sur linkinghub.elsevier.com
  • 1
  • 2
  • Page 1 de 2
RIS

Format recommandé pour la plupart des logiciels de gestion de références bibliographiques

BibTeX

Format recommandé pour les logiciels spécialement conçus pour BibTeX

Flux web personnalisé
Dernière mise à jour depuis la base de données : 08/06/2025 05:00 (UTC)

Explorer

Auteur·e·s

  • Peng, Changhui

Type de ressource

  • Article de revue (37)

Année de publication

  • Entre 2000 et 2025
    • Entre 2020 et 2025
      • 2023

Explorer

UQAM - Université du Québec à Montréal

  • Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  • bibliotheques@uqam.ca

Accessibilité Web