Votre recherche
Résultats 27 ressources
-
Abstract. Earth system processes exhibit complex patterns across time, as do the models that seek to replicate these processes. Model output may or may not be significantly related to observations at different times and on different frequencies. Conventional model diagnostics provide an aggregate view of model–data agreement, but usually do not identify the time and frequency patterns of model–data disagreement, leaving unclear the steps required to improve model response to environmental drivers that vary on characteristic frequencies. Wavelet coherence can quantify the times and timescales at which two time series, for example time series of models and measurements, are significantly different. We applied wavelet coherence to interpret the predictions of 20 ecosystem models from the North American Carbon Program (NACP) Site-Level Interim Synthesis when confronted with eddy-covariance-measured net ecosystem exchange (NEE) from 10 ecosystems with multiple years of available data. Models were grouped into classes with similar approaches for incorporating phenology, the calculation of NEE, the inclusion of foliar nitrogen (N), and the use of model–data fusion. Models with prescribed, rather than prognostic, phenology often fit NEE observations better on annual to interannual timescales in grassland, wetland and agricultural ecosystems. Models that calculated NEE as net primary productivity (NPP) minus heterotrophic respiration (HR) rather than gross ecosystem productivity (GPP) minus ecosystem respiration (ER) fit better on annual timescales in grassland and wetland ecosystems, but models that calculated NEE as GPP minus ER were superior on monthly to seasonal timescales in two coniferous forests. Models that incorporated foliar nitrogen (N) data were successful at capturing NEE variability on interannual (multiple year) timescales at Howland Forest, Maine. The model that employed a model–data fusion approach often, but not always, resulted in improved fit to data, suggesting that improving model parameterization is important but not the only step for improving model performance. Combined with previous findings, our results suggest that the mechanisms driving daily and annual NEE variability tend to be correctly simulated, but the magnitude of these fluxes is often erroneous, suggesting that model parameterization must be improved. Few NACP models correctly predicted fluxes on seasonal and interannual timescales where spectral energy in NEE observations tends to be low, but where phenological events, multi-year oscillations in climatological drivers, and ecosystem succession are known to be important for determining ecosystem function. Mechanistic improvements to models must be made to replicate observed NEE variability on seasonal and interannual timescales.
-
The spatial and temporal variation and uncertainty of precipitation and runoff in China were compared and evaluated between historical and future periods under different climate change scenarios. The precipitation pattern is derived from observed and future projected precipitation data for historical and future periods, respectively. The runoff is derived from simulation results in historical and future periods using a dynamic global vegetation model (DGVM) forced with historical observed and global climate models (GCMs) future projected climate data, respectively. One GCM (CGCM3.1) under two emission scenarios (SRES A2 and SRES B1) was used for the future period simulations. The results indicated high uncertainties and variations in climate change effects on hydrological processes in China: precipitation and runoff showed a significant increasing trend in the future period but a decreasing trend in the historical period at the national level; the temporal variation and uncertainty of projected precipitation and runoff in the future period were predicted to be higher than those in the historical period; the levels of precipitation and runoff in the future period were higher than those in the historical period. The change in trends of precipitation and runoff are highly affected by different climate change scenarios. GCM structure and emission scenarios should be the major sources of uncertainty.
-
Abstract. Terrestrial biosphere models (TBMs) have become an integral tool for extrapolating local observations and understanding of land-atmosphere carbon exchange to larger regions. The North American Carbon Program (NACP) Multi-scale synthesis and Terrestrial Model Intercomparison Project (MsTMIP) is a formal model intercomparison and evaluation effort focused on improving the diagnosis and attribution of carbon exchange at regional and global scales. MsTMIP builds upon current and past synthesis activities, and has a unique framework designed to isolate, interpret, and inform understanding of how model structural differences impact estimates of carbon uptake and release. Here we provide an overview of the MsTMIP effort and describe how the MsTMIP experimental design enables the assessment and quantification of TBM structural uncertainty. Model structure refers to the types of processes considered (e.g. nutrient cycling, disturbance, lateral transport of carbon), and how these processes are represented (e.g. photosynthetic formulation, temperature sensitivity, respiration) in the models. By prescribing a common experimental protocol with standard spin-up procedures and driver data sets, we isolate any biases and variability in TBM estimates of regional and global carbon budgets resulting from differences in the models themselves (i.e. model structure) and model-specific parameter values. An initial intercomparison of model structural differences is represented using hierarchical cluster diagrams (a.k.a. dendrograms), which highlight similarities and differences in how models account for carbon cycle, vegetation, energy, and nitrogen cycle dynamics. We show that, despite the standardized protocol used to derive initial conditions, models show a high degree of variation for GPP, total living biomass, and total soil carbon, underscoring the influence of differences in model structure and parameterization on model estimates.
-
In recent years, plastic greenhouse vegetable cultivation (PGVC) has expanded worldwide, particularly in China, where it accounts for more than 90% of all global PGVC operations. As compared with conventional agricultural methods, PGVC has doubled crop yields by extending growing seasons and intensifying agriculture. PGVC also offers more ecosystem services relative to conventional approaches, including greater soil carbon sequestration, lower water consumption, and improved soil protection at regional scales. The economic benefits of this easily implemented agricultural method are attractive to small‐holder farmers. However, greater environmental impacts (eg greenhouse‐gas emissions, generation of large amounts of plastic waste) are associated with PGVC than with conventional approaches. Here, we review what is currently known about PGVC and identify future research priorities that will comprehensively assess the ecosystem services offered by this method of cultivation, as well as its environmental impacts and socioeconomic benefits.
-
Abstract Sources of methane ( CH 4 ) become highly variable for countries undergoing a heightened period of development due to both human activity and climate change. An urgent need therefore exists to budget key sources of CH 4 , such as wetlands (rice paddies and natural wetlands) and lakes (including reservoirs and ponds), which are sensitive to these changes. For this study, references in relation to CH 4 emissions from rice paddies, natural wetlands, and lakes in C hina were first reviewed and then reestimated based on the review itself. Total emissions from the three CH 4 sources were 11.25 Tg CH 4 yr −1 (ranging from 7.98 to 15.16 Tg CH 4 yr −1 ). Among the emissions, 8.11 Tg CH 4 yr −1 (ranging from 5.20 to 11.36 Tg CH 4 yr −1 ) derived from rice paddies, 2.69 Tg CH 4 yr −1 (ranging from 2.46 to 3.20 Tg CH 4 yr −1 ) from natural wetlands, and 0.46 Tg CH 4 yr −1 (ranging from 0.33 to 0.59 Tg CH 4 yr −1 ) from lakes (including reservoirs and ponds). Plentiful water and warm conditions, as well as its large rice paddy area make rice paddies in southeastern C hina the greatest overall source of CH 4 , accounting for approximately 55% of total paddy emissions. Natural wetland estimates were slightly higher than the other estimates owing to the higher CH 4 emissions recorded within Q inghai‐ T ibetan P lateau peatlands. Total CH 4 emissions from lakes were estimated for the first time by this study, with three quarters from the littoral zone and one quarter from lake surfaces. Rice paddies, natural wetlands, and lakes are not constant sources of CH 4 , but decreasing ones influenced by anthropogenic activity and climate change. A new progress‐based model used in conjunction with more observations through model‐data fusion approach could help obtain better estimates and insights with regard to CH 4 emissions deriving from wetlands and lakes in C hina.
-
Abstract With a pace of about twice the observed rate of global warming, the temperature on the Qinghai‐Tibetan Plateau (Earth's ‘third pole’) has increased by 0.2 °C per decade over the past 50 years, which results in significant permafrost thawing and glacier retreat. Our review suggested that warming enhanced net primary production and soil respiration, decreased methane ( CH 4 ) emissions from wetlands and increased CH 4 consumption of meadows, but might increase CH 4 emissions from lakes. Warming‐induced permafrost thawing and glaciers melting would also result in substantial emission of old carbon dioxide ( CO 2 ) and CH 4 . Nitrous oxide ( N 2 O ) emission was not stimulated by warming itself, but might be slightly enhanced by wetting. However, there are many uncertainties in such biogeochemical cycles under climate change. Human activities (e.g. grazing, land cover changes) further modified the biogeochemical cycles and amplified such uncertainties on the plateau. If the projected warming and wetting continues, the future biogeochemical cycles will be more complicated. So facing research in this field is an ongoing challenge of integrating field observations with process‐based ecosystem models to predict the impacts of future climate change and human activities at various temporal and spatial scales. To reduce the uncertainties and to improve the precision of the predictions of the impacts of climate change and human activities on biogeochemical cycles, efforts should focus on conducting more field observation studies, integrating data within improved models, and developing new knowledge about coupling among carbon, nitrogen, and phosphorus biogeochemical cycles as well as about the role of microbes in these cycles.
-
A bstract Developing models to predict tree mortality using data from long‐term repeated measurement data sets can be difficult and challenging due to the nature of mortality as well as the effects of dependence on observations. Marginal (population‐averaged) generalized estimating equations (GEE) and random effects (subject‐specific) models offer two possible ways to overcome these effects. For this study, standard logistic, marginal logistic based on the GEE approach, and random logistic regression models were fitted and compared. In addition, four model evaluation statistics were calculated by means of K ‐fold cross‐valuation. They include the mean prediction error, the mean absolute prediction error, the variance of prediction error, and the mean square error. Results from this study suggest that the random effects model produced the smallest evaluation statistics among the three models. Although marginal logistic regression accommodated for correlations between observations, it did not provide noticeable improvements of model performance compared to the standard logistic regression model that assumed impendence. This study indicates that the random effects model was able to increase the overall accuracy of mortality modeling. Moreover, it was able to ascertain correlation derived from the hierarchal data structure as well as serial correlation generated through repeated measurements.
- 1
- 2