Accéder au contenu Accéder au menu principal Accéder à la recherche
Accéder au contenu Accéder au menu principal
UQAM logo
Page d'accueil de l'UQAM Étudier à l'UQAM Bottin du personnel Carte du campus Bibliothèques Pour nous joindre

Service des bibliothèques

Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
UQAM logo
Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  • Bibliographie
  • Accueil
  1. Vitrine des bibliographies
  2. Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  3. Résultats
  • Accueil

Votre recherche

Réinitialiser la recherche

Aide

L’interface de recherche est composée de trois sections : Rechercher, Explorer et Résultats. Celles-ci sont décrites en détail ci-dessous.

Vous pouvez lancer une recherche aussi bien à partir de la section Rechercher qu’à partir de la section Explorer.

Rechercher

Cette section affiche vos critères de recherche courants et vous permet de soumettre des mots-clés à chercher dans la bibliographie.

  • Chaque nouvelle soumission ajoute les mots-clés saisis à la liste des critères de recherche.
  • Pour lancer une nouvelle recherche plutôt qu’ajouter des mots-clés à la recherche courante, utilisez le bouton Réinitialiser la recherche, puis entrez vos mots-clés.
  • Pour remplacer un mot-clé déjà soumis, veuillez d’abord le retirer en décochant sa case à cocher, puis soumettre un nouveau mot-clé.
  • Vous pouvez contrôler la portée de votre recherche en choisissant où chercher. Les options sont :
    • Partout : repère vos mots-clés dans tous les champs des références bibliographiques ainsi que dans le contenu textuel des documents disponibles.
    • Dans les auteurs ou contributeurs : repère vos mots-clés dans les noms d’auteurs ou de contributeurs.
    • Dans les titres : repère vos mots-clés dans les titres.
    • Dans tous les champs : repère vos mots-clés dans tous les champs des notices bibliographiques.
    • Dans les documents : repère vos mots-clés dans le contenu textuel des documents disponibles.
  • Vous pouvez utiliser les opérateurs booléens avec vos mots-clés :
    • ET : repère les références qui contiennent tous les termes fournis. Ceci est la relation par défaut entre les termes séparés d’un espace. Par exemple, a b est équivalent à a ET b.
    • OU : repère les références qui contiennent n’importe lequel des termes fournis. Par exemple, a OU b.
    • SAUF : exclut les références qui contiennent le terme fourni. Par exemple, SAUF a.
    • Les opérateurs booléens doivent être saisis en MAJUSCULES.
  • Vous pouvez faire des groupements logiques (avec les parenthèses) pour éviter les ambiguïtés lors de la combinaison de plusieurs opérateurs booléens. Par exemple, (a OU b) ET c.
  • Vous pouvez demander une séquence exacte de mots (avec les guillemets droits), par exemple "a b c". Par défaut la différence entre les positions des mots est de 1, ce qui signifie qu’une référence sera repérée si elle contient les mots et qu’ils sont consécutifs. Une distance maximale différente peut être fournie (avec le tilde), par exemple "a b"~2 permet jusqu’à un terme entre a et b, ce qui signifie que la séquence a c b pourrait être repérée aussi bien que a b.
  • Vous pouvez préciser que certains termes sont plus importants que d’autres (avec l’accent circonflexe). Par exemple, a^2 b c^0.5 indique que a est deux fois plus important que b dans le calcul de pertinence des résultats, tandis que c est de moitié moins important. Ce type de facteur peut être appliqué à un groupement logique, par exemple (a b)^3 c.
  • La recherche par mots-clés est insensible à la casse et les accents et la ponctuation sont ignorés.
  • Les terminaisons des mots sont amputées pour la plupart des champs, tels le titre, le résumé et les notes. L’amputation des terminaisons vous évite d’avoir à prévoir toutes les formes possibles d’un mot dans vos recherches. Ainsi, les termes municipal, municipale et municipaux, par exemple, donneront tous le même résultat. L’amputation des terminaisons n’est pas appliquée au texte des champs de noms, tels auteurs/contributeurs, éditeur, publication.

Explorer

Cette section vous permet d’explorer les catégories associées aux références.

  • Les catégories peuvent servir à affiner votre recherche. Cochez une catégorie pour l’ajouter à vos critères de recherche. Les résultats seront alors restreints aux références qui sont associées à cette catégorie.
  • Dé-cochez une catégorie pour la retirer de vos critères de recherche et élargir votre recherche.
  • Les nombres affichés à côté des catégories indiquent combien de références sont associées à chaque catégorie considérant les résultats de recherche courants. Ces nombres varieront en fonction de vos critères de recherche, de manière à toujours décrire le jeu de résultats courant. De même, des catégories et des facettes entières pourront disparaître lorsque les résultats de recherche ne contiennent aucune référence leur étant associées.
  • Une icône de flèche () apparaissant à côté d’une catégorie indique que des sous-catégories sont disponibles. Vous pouvez appuyer sur l’icône pour faire afficher la liste de ces catégories plus spécifiques. Par la suite, vous pouvez appuyer à nouveau pour masquer la liste. L’action d’afficher ou de masquer les sous-catégories ne modifie pas vos critères de recherche; ceci vous permet de rapidement explorer l’arborescence des catégories, si désiré.

Résultats

Cette section présente les résultats de recherche. Si aucun critère de recherche n’a été fourni, elle montre toute la bibliographie (jusqu’à 20 références par page).

  • Chaque référence de la liste des résultats est un hyperlien vers sa notice bibliographique complète. À partir de la notice, vous pouvez continuer à explorer les résultats de recherche en naviguant vers les notices précédentes ou suivantes de vos résultats de recherche, ou encore retourner à la liste des résultats.
  • Des hyperliens supplémentaires, tels que Consulter le document ou Consulter sur [nom d’un site web], peuvent apparaître sous un résultat de recherche. Ces liens vous fournissent un accès rapide à la ressource, des liens que vous trouverez également dans la notice bibliographique.
  • Le bouton Résumés vous permet d’activer ou de désactiver l’affichage des résumés dans la liste des résultats de recherche. Toutefois, activer l’affichage des résumés n’aura aucun effet sur les résultats pour lesquels aucun résumé n’est disponible.
  • Diverses options sont fournies pour permettre de contrôler l’ordonnancement les résultats de recherche. L’une d’elles est l’option de tri par Pertinence, qui classe les résultats du plus pertinent au moins pertinent. Le score utilisé à cette fin prend en compte la fréquence des mots ainsi que les champs dans lesquels ils apparaissent. Par exemple, si un terme recherché apparaît fréquemment dans une référence ou est l’un d’un très petit nombre de termes utilisé dans cette référence, cette référence aura probablement un score plus élevé qu’une autre où le terme apparaît moins fréquemment ou qui contient un très grand nombre de mots. De même, le score sera plus élevé si un terme est rare dans l’ensemble de la bibliographie que s’il est très commun. De plus, si un terme de recherche apparaît par exemple dans le titre d’une référence, le score de cette référence sera plus élevé que s’il apparaissait dans un champ moins important tel le résumé.
  • Le tri par Pertinence n’est disponible qu’après avoir soumis des mots-clés par le biais de la section Rechercher.
  • Les catégories sélectionnées dans la section Explorer n’ont aucun effet sur le tri par pertinence. Elles ne font que filtrer la liste des résultats.
Auteur·e·s
  • Peng, Changhui

Résultats 457 ressources

Date décroissanteDate croissanteAuteur A-ZAuteur Z-ATitre A-ZTitre Z-A
  • 1
  • ...
  • 6
  • 7
  • 8
  • 9
  • 10
  • ...
  • 23
  • Page 8 de 23
Résumés
  • Li, T., Ge, L., Huang, J., Yuan, X., Peng, C., Wang, S., Bu, Z., Zhu, Q., Wang, Z., Liu, W., & Wang, M. (2020). Contrasting responses of soil exoenzymatic interactions and the dissociated carbon transformation to short- and long-term drainage in a minerotrophic peatland. Geoderma, 377, 114585. https://doi.org/10.1016/j.geoderma.2020.114585
    Consulter sur linkinghub.elsevier.com
  • Liu, W., Hou, Y., Liu, W., Yang, M., Yan, Y., Peng, C., & Yu, Z. (2020). Global estimation of the climate change impact of logging residue utilization for biofuels. Forest Ecology and Management, 462, 118000. https://doi.org/10.1016/j.foreco.2020.118000
    Consulter sur linkinghub.elsevier.com
  • Liu, W., Xu, J., Xie, X., Yan, Y., Zhou, X., & Peng, C. (2020). A new integrated framework to estimate the climate change impacts of biomass utilization for biofuel in life cycle assessment. Journal of Cleaner Production, 267, 122061. https://doi.org/10.1016/j.jclepro.2020.122061
    Consulter sur linkinghub.elsevier.com
  • Liu, Y., Zhu, G., Hai, X., Li, J., Shangguan, Z., Peng, C., & Deng, L. (2020). Long-term forest succession improves plant diversity and soil quality but not significantly increase soil microbial diversity: Evidence from the Loess Plateau. Ecological Engineering, 142, 105631. https://doi.org/10.1016/j.ecoleng.2019.105631
    Consulter sur linkinghub.elsevier.com
  • Liu, Z., Peng, C., De Grandpré, L., Candau, J., Work, T., Zhou, X., & Kneeshaw, D. (2020). Aerial spraying of bacterial insecticides to control spruce budworm defoliation leads to reduced carbon losses. Ecosphere, 11(1), e02988. https://doi.org/10.1002/ecs2.2988

    Abstract Spruce budworm (SBW) outbreaks are a major natural disturbance in boreal forests of eastern North America. During large‐scale infestations, aerial spraying of bacterial insecticides is used to suppress local high‐density SBW populations. While the primary goal of spraying is the protection of wood volume for later harvest, it should also maintain carbon stored in trees. This study provides the first quantitative analysis of the efficacy of aerial spraying against SBW on carbon dynamics in balsam fir, spruce, and mixed fir–spruce forests. In this study, we used the TRIPLEX‐Insect model to simulate carbon dynamics with and without spray applications in 14 sites of the boreal forest located in various regions of Québec. We found that the efficacy of aerial spraying on reducing annual defoliation was greater in the early stage (<5 yr since the outbreak began) of the outbreak than in later (5–10 yr since the outbreak began) stage. Our results showed that more net ecosystem productivity is maintained in balsam fir (the most vulnerable species) than in either spruce or mixed fir–spruce forests following spraying. Also, average losses in aboveground biomass due to the SBW following spraying occurred more slowly than without spraying in balsam fir forests. Our findings suggest that aerial spraying could be used to maintain carbon in conifer forests during SBW disturbances, but that the efficacy of spray programs is affected by host species and stage of the SBW outbreak.

    Consulter sur esajournals.onlinelibrary.wiley.com
  • Luo, Z., Luo, Y., Wang, G., Xia, J., & Peng, C. (2020). Warming‐induced global soil carbon loss attenuated by downward carbon movement. Global Change Biology, 26(12), 7242–7254. https://doi.org/10.1111/gcb.15370

    Abstract The fate of soil organic carbon (SOC) under warming is poorly understood, particularly across large extents and in the whole‐soil profile. Using a data‐model integration approach applied across the globe, we find that downward movement of SOC along the soil profile reduces SOC loss under warming. We predict that global SOC stocks (down to 2 m) will decline by 4% (~80 Pg) on average when SOC reaches the steady state under 2°C warming, assuming no changes in net primary productivity (NPP). To compensate such decline (i.e. maintain current SOC stocks), a 3% increase of NPP is required. Without the downward SOC movement, global SOC declines by 15%, while a 20% increase in NPP is needed to compensate that loss. This vital role of downward SOC movement in controlling whole‐soil profile SOC dynamics in response to warming is due to the protection afforded to downward‐moving SOC by depth, indicated by much longer residence times of SOC in deeper layers. Additionally, we find that this protection could not be counteracted by promoted decomposition due to the priming of downward‐moving new SOC from upper layers on native old SOC in deeper layers. This study provides the first estimation of whole‐soil SOC changes under warming and additional NPP required to compensate such changes across the globe, and reveals the vital role of downward movement of SOC in reducing SOC loss under global warming.

    Consulter sur onlinelibrary.wiley.com
  • Paschalis, A., Fatichi, S., Zscheischler, J., Ciais, P., Bahn, M., Boysen, L., Chang, J., De Kauwe, M., Estiarte, M., Goll, D., Hanson, P. J., Harper, A. B., Hou, E., Kigel, J., Knapp, A. K., Larsen, K. S., Li, W., Lienert, S., Luo, Y., … Zhu, Q. (2020). Rainfall manipulation experiments as simulated by terrestrial biosphere models: Where do we stand? Global Change Biology, 26(6), 3336–3355. https://doi.org/10.1111/gcb.15024

    Abstract Changes in rainfall amounts and patterns have been observed and are expected to continue in the near future with potentially significant ecological and societal consequences. Modelling vegetation responses to changes in rainfall is thus crucial to project water and carbon cycles in the future. In this study, we present the results of a new model‐data intercomparison project, where we tested the ability of 10 terrestrial biosphere models to reproduce the observed sensitivity of ecosystem productivity to rainfall changes at 10 sites across the globe, in nine of which, rainfall exclusion and/or irrigation experiments had been performed. The key results are as follows: (a) Inter‐model variation is generally large and model agreement varies with timescales. In severely water‐limited sites, models only agree on the interannual variability of evapotranspiration and to a smaller extent on gross primary productivity. In more mesic sites, model agreement for both water and carbon fluxes is typically higher on fine (daily–monthly) timescales and reduces on longer (seasonal–annual) scales. (b) Models on average overestimate the relationship between ecosystem productivity and mean rainfall amounts across sites (in space) and have a low capacity in reproducing the temporal (interannual) sensitivity of vegetation productivity to annual rainfall at a given site, even though observation uncertainty is comparable to inter‐model variability. (c) Most models reproduced the sign of the observed patterns in productivity changes in rainfall manipulation experiments but had a low capacity in reproducing the observed magnitude of productivity changes. Models better reproduced the observed productivity responses due to rainfall exclusion than addition. (d) All models attribute ecosystem productivity changes to the intensity of vegetation stress and peak leaf area, whereas the impact of the change in growing season length is negligible. The relative contribution of the peak leaf area and vegetation stress intensity was highly variable among models.

    Consulter sur onlinelibrary.wiley.com
  • Song, H., Huang, J., Ge, L., Peng, C., Zhao, P., Guo, X., Li, T., Shen, X., Zhu, Q., Liu, W., Wei, H., & Wang, M. (2020). Interspecific difference in N:P stoichiometric homeostasis drives nutrient release and soil microbial community composition during decomposition. Plant and Soil, 452(1–2), 29–42. https://doi.org/10.1007/s11104-020-04513-4
    Consulter sur link.springer.com
  • Wang, J., Zhu, Q., Yang, Y., Zhang, X., Zhang, J., Yuan, M., Chen, H., & Peng, C. (2020). High uncertainties detected in the wetlands distribution of the Qinghai–Tibet Plateau based on multisource data. Landscape and Ecological Engineering, 16(1), 47–61. https://doi.org/10.1007/s11355-019-00402-w
    Consulter sur link.springer.com
  • Wu, C., Chen, Y., Hong, X., Liu, Z., & Peng, C. (2020). Evaluating soil nutrients of Dacrydium pectinatum in China using machine learning techniques. Forest Ecosystems, 7(1), 30. https://doi.org/10.1186/s40663-020-00232-5

    Abstract Background The accurate estimation of soil nutrient content is particularly important in view of its impact on plant growth and forest regeneration. In order to investigate soil nutrient content and quality for the natural regeneration of Dacrydium pectinatum communities in China, designing advanced and accurate estimation methods is necessary. Methods This study uses machine learning techniques created a series of comprehensive and novel models from which to evaluate soil nutrient content. Soil nutrient evaluation methods were built by using six support vector machines and four artificial neural networks. Results The generalized regression neural network model was the best artificial neural network evaluation model with the smallest root mean square error (5.1), mean error (− 0.85), and mean square prediction error (29). The accuracy rate of the combined k -nearest neighbors ( k -NN) local support vector machines model (i.e. k -nearest neighbors -support vector machine (KNNSVM)) for soil nutrient evaluation was high, comparing to the other five partial support vector machines models investigated. The area under curve value of generalized regression neural network (0.6572) was the highest, and the cross-validation result showed that the generalized regression neural network reached 92.5%. Conclusions Both the KNNSVM and generalized regression neural network models can be effectively used to evaluate soil nutrient content and quality grades in conjunction with appropriate model variables. Developing a new feasible evaluation method to assess soil nutrient quality for Dacrydium pectinatum , results from this study can be used as a reference for the adaptive management of rare and endangered tree species. This study, however, found some uncertainties in data acquisition and model simulations, which will be investigated in upcoming studies.

    Consulter sur forestecosyst.springeropen.com
  • Wu, H., Xiang, W., Ouyang, S., Xiao, W., Li, S., Chen, L., Lei, P., Deng, X., Zeng, Y., Zeng, L., & Peng, C. (2020). Tree growth rate and soil nutrient status determine the shift in nutrient-use strategy of Chinese fir plantations along a chronosequence. Forest Ecology and Management, 460, 117896. https://doi.org/10.1016/j.foreco.2020.117896
    Consulter sur linkinghub.elsevier.com
  • Yang, M., Mou, Y., Meng, Y., Liu, S., Peng, C., & Zhou, X. (2020). Modeling the effects of precipitation and temperature patterns on agricultural drought in China from 1949 to 2015. Science of The Total Environment, 711, 135139. https://doi.org/10.1016/j.scitotenv.2019.135139
    Consulter sur linkinghub.elsevier.com
  • Yang, Y., Zhu, Q., Liu, J., Li, M., Yuan, M., Chen, H., Peng, C., & Yang, Z. (2020). Estimating soil organic carbon redistribution in three major river basins of China based on erosion processes. Soil Research, 58(6), 540. https://doi.org/10.1071/SR19325

    Soil erosion by water affects soil organic carbon (SOC) migration and distribution, which are important processes for defining ecosystem carbon sources and sinks. Little has been done to quantify soil carbon erosion in the three major basins in China, the Yangtze River, Yellow River and Pearl River Basins, which contain the most eroded areas. This research attempts to quantify the lateral movement of SOC based on spatial and temporal patterns of water erosion rates derived from an empirical Unit Stream Power Erosion Deposition Model (USPED) model. The water erosion rates simulated by the USPED model agreed reasonably with observations (R2 = 0.43, P &lt; 0.01). We showed that regional water erosion ranged within 23.3–50 Mg ha–1 year–1 during 1992–2013, inducing the lateral redistribution of SOC caused by erosion in the range of 0.027–0.049 Mg C ha–1 year–1, and that caused by deposition of 0.0079–0.015 Mg C ha–1 year–1, in the three basins. The total eroded SOC was 0.006, 0.002 and 0.001 Pg year–1 in the Yangtze River, Yellow River and Pearl River Basins respectively. The net eroded SOC in the three basins was ~0.0075 Pg C year–1. Overall, the annual average redistributed SOC rate caused by erosion was greater than that caused by deposition, and the SOC loss in the Yangtze River Basin was greatest among the three basins. Our study suggests that considering both processes of erosion and deposition – as well as effects of topography, rainfall, land use types and their interactions – on these processes are important to understand SOC redistribution caused by water erosion.

    Consulter sur www.publish.csiro.au
  • Zhang, J., Ding, J., Zhang, J., Yuan, M., Li, P., Xiao, Z., Peng, C., Chen, H., Wang, M., & Zhu, Q. (2020). Effects of increasing aerosol optical depth on the gross primary productivity in China during 2000–2014. Ecological Indicators, 108, 105761. https://doi.org/10.1016/j.ecolind.2019.105761
    Consulter sur linkinghub.elsevier.com
  • Zhang, J., Peng, C., Xue, W., Yang, B., Yang, Z., Niu, S., Zhu, Q., & Wang, M. (2020). Dynamics of soil water extractable organic carbon and inorganic nitrogen and their environmental controls in mountain forest and meadow ecosystems in China. CATENA, 187, 104338. https://doi.org/10.1016/j.catena.2019.104338
    Consulter sur linkinghub.elsevier.com
  • Zhang, M., Chen, S., Jiang, H., Peng, C., Zhang, J., & Zhou, G. (2020). The impact of intensive management on net ecosystem productivity and net primary productivity of a Lei bamboo forest. Ecological Modelling, 435, 109248. https://doi.org/10.1016/j.ecolmodel.2020.109248
    Consulter sur linkinghub.elsevier.com
  • Yu, K., Smith, W. K., Trugman, A. T., Condit, R., Hubbell, S. P., Sardans, J., Peng, C., Zhu, K., Peñuelas, J., Cailleret, M., Levanic, T., Gessler, A., Schaub, M., Ferretti, M., & Anderegg, W. R. L. (2019). Pervasive decreases in living vegetation carbon turnover time across forest climate zones. Proceedings of the National Academy of Sciences, 116(49), 24662–24667. https://doi.org/10.1073/pnas.1821387116

    Forests play a major role in the global carbon cycle. Previous studies on the capacity of forests to sequester atmospheric CO 2 have mostly focused on carbon uptake, but the roles of carbon turnover time and its spatiotemporal changes remain poorly understood. Here, we used long-term inventory data (1955 to 2018) from 695 mature forest plots to quantify temporal trends in living vegetation carbon turnover time across tropical, temperate, and cold climate zones, and compared plot data to 8 Earth system models (ESMs). Long-term plots consistently showed decreases in living vegetation carbon turnover time, likely driven by increased tree mortality across all major climate zones. Changes in living vegetation carbon turnover time were negatively correlated with CO 2 enrichment in both forest plot data and ESM simulations. However, plot-based correlations between living vegetation carbon turnover time and climate drivers such as precipitation and temperature diverged from those of ESM simulations. Our analyses suggest that forest carbon sinks are likely to be constrained by a decrease in living vegetation carbon turnover time, and accurate projections of forest carbon sink dynamics will require an improved representation of tree mortality processes and their sensitivity to climate in ESMs.

    Consulter sur pnas.org
  • El Masri, B., Schwalm, C., Huntzinger, D. N., Mao, J., Shi, X., Peng, C., Fisher, J. B., Jain, A. K., Tian, H., Poulter, B., & Michalak, A. M. (2019). Carbon and Water Use Efficiencies: A Comparative Analysis of Ten Terrestrial Ecosystem Models under Changing Climate. Scientific Reports, 9(1), 14680. https://doi.org/10.1038/s41598-019-50808-7

    Abstract Terrestrial ecosystems carbon and water cycles are tightly coupled through photosynthesis and evapotranspiration processes. The ratios of carbon stored to carbon uptake and water loss to carbon gain are key ecophysiological indicators essential to assess the magnitude and response of the terrestrial plant to the changing climate. Here, we use estimates from 10 terrestrial ecosystem models to quantify the impacts of climate, atmospheric CO 2 concentration, and nitrogen (N) deposition on water use efficiency (WUE), and carbon use efficiency (CUE). We find that across models, WUE increases over the 20 th Century particularly due to CO 2 fertilization and N deposition and compares favorably to experimental studies. Also, the results show a decrease in WUE with climate for the last 3 decades, in contrasts with up-scaled flux observations that demonstrate a constant WUE. Modeled WUE responds minimally to climate with modeled CUE exhibiting no clear trend across space and time. The divergence between simulated and observationally-constrained WUE and CUE is driven by modeled NPP and autotrophic respiration, nitrogen cycle, carbon allocation, and soil moisture dynamics in current ecosystem models. We suggest that carbon-modeling community needs to reexamine stomatal conductance schemes and the soil-vegetation interactions for more robust modeling of carbon and water cycles.

    Consulter sur www.nature.com
  • Liu, C., Zhou, X., Lei, X., Huang, H., Zhou, C., Peng, C., & Wang, X. (2019). Separating Regressions for Model Fitting to Reduce the Uncertainty in Forest Volume-Biomass Relationship. Forests, 10(8), 658. https://doi.org/10.3390/f10080658

    The method of forest biomass estimation based on a relationship between the volume and biomass has been applied conventionally for estimating stand above- and below-ground biomass (SABB, t ha−1) from mean growing stock volume (m3 ha−1). However, few studies have reported on the diagnosis of the volume-SABB equations fitted using field data. This paper addresses how to (i) check parameters of the volume-SABB equations, and (ii) reduce the bias while building these equations. In our analysis, all equations were applied based on the measurements of plots (biomass or volume per hectare) rather than individual trees. The volume-SABB equation is re-expressed by two Parametric Equations (PEs) for separating regressions. Stem biomass is an intermediate variable (parametric variable) in the PEs, of which one is established by regressing the relationship between stem biomass and volume, and the other is created by regressing the allometric relationship of stem biomass and SABB. A graphical analysis of the PEs proposes a concept of “restricted zone,” which helps to diagnose parameters of the volume-SABB equations in regression analyses of field data. The sampling simulations were performed using pseudo data (artificially generated in order to test a model) for the model test. Both analyses of the regression and simulation demonstrate that the wood density impacts the parameters more than the allometric relationship does. This paper presents an applicable method for testing the field data using reasonable wood densities, restricting the error in field data processing based on limited field plots, and achieving a better understanding of the uncertainty in building those equations.

    Consulter sur www.mdpi.com
  • Yang, Y., Zhao, J., Zhao, P., Wang, H., Wang, B., Su, S., Li, M., Wang, L., Zhu, Q., Pang, Z., & Peng, C. (2019). Trait-Based Climate Change Predictions of Vegetation Sensitivity and Distribution in China. Frontiers in Plant Science, 10, 908. https://doi.org/10.3389/fpls.2019.00908
    Consulter sur www.frontiersin.org
  • 1
  • ...
  • 6
  • 7
  • 8
  • 9
  • 10
  • ...
  • 23
  • Page 8 de 23
RIS

Format recommandé pour la plupart des logiciels de gestion de références bibliographiques

BibTeX

Format recommandé pour les logiciels spécialement conçus pour BibTeX

Flux web personnalisé
Dernière mise à jour depuis la base de données : 15/06/2025 05:00 (UTC)

Explorer

Auteur·e·s

  • Peng, Changhui

Type de ressource

  • Article de colloque (1)
  • Article de revue (453)
  • Chapitre de livre (1)
  • Livre (1)
  • Prépublication (1)

Année de publication

  • Entre 1900 et 1999 (13)
    • Entre 1990 et 1999 (13)
      • 1994 (1)
      • 1995 (3)
      • 1997 (1)
      • 1998 (3)
      • 1999 (5)
  • Entre 2000 et 2025 (444)
    • Entre 2000 et 2009 (53)
      • 2000 (3)
      • 2001 (3)
      • 2002 (7)
      • 2003 (3)
      • 2004 (3)
      • 2005 (3)
      • 2006 (5)
      • 2007 (7)
      • 2008 (9)
      • 2009 (10)
    • Entre 2010 et 2019 (235)
      • 2010 (6)
      • 2011 (31)
      • 2012 (17)
      • 2013 (27)
      • 2014 (29)
      • 2015 (15)
      • 2016 (22)
      • 2017 (18)
      • 2018 (27)
      • 2019 (43)
    • Entre 2020 et 2025 (156)
      • 2020 (31)
      • 2021 (42)
      • 2022 (26)
      • 2023 (37)
      • 2024 (20)

Explorer

UQAM - Université du Québec à Montréal

  • Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  • bibliotheques@uqam.ca

Accessibilité Web