Votre recherche
Résultats 457 ressources
-
Abstract Background It is still not clear whether the effects of N deposition on soil greenhouse gas (GHG) emissions are influenced by plantation management schemes. A field experiment was conducted to investigate the effects of conventional management (CM) versus intensive management (IM), in combination with simulated N deposition levels of control (ambient N deposition), 30 kg N·ha − 1 ·year − 1 (N30, ambient + 30 kg N·ha − 1 ·year − 1 ), 60 kg N·ha − 1 ·year − 1 (N60, ambient + 60 kg N·ha − 1 ·year − 1 ), or 90 kg N·ha − 1 ·year − 1 (N90, ambient + 90 kg N·ha − 1 ·year − 1 ) on soil CO 2 , CH 4 , and N 2 O fluxes. For this, 24 plots were set up in a Moso bamboo ( Phyllostachys edulis ) plantation from January 2013 to December 2015. Gas samples were collected monthly from January 2015 to December 2015. Results Compared with CM, IM significantly increased soil CO 2 emissions and their temperature sensitivity ( Q 10 ) but had no significant effects on soil CH 4 uptake or N 2 O emissions. In the CM plots, N30 and N60 significantly increased soil CO 2 emissions, while N60 and N90 significantly increased soil N 2 O emissions. In the IM plots, N30 and N60 significantly increased soil CO 2 and N 2 O emissions, while N60 and N90 significantly decreased soil CH 4 uptake. Overall, in both CM and IM plots, N30 and N60 significantly increased global warming potentials, whereas N90 did not significantly affect global warming potential. However, N addition significantly decreased the Q 10 value of soil CO 2 emissions under IM but not under CM. Soil microbial biomass carbon was significantly and positively correlated with soil CO 2 and N 2 O emissions but significantly and negatively correlated with soil CH 4 uptake. Conclusion Our results indicate that management scheme effects should be considered when assessing the effect of atmospheric N deposition on GHG emissions in bamboo plantations.
-
The carbon use efficiency (CUE) of ecosystems, expressed as the ratio of net primary production (NPP) and gross primary production (GPP), is extremely sensitive to climate change and has a great effect on the carbon cycles of terrestrial ecosystems. Climate change leads to changes in vegetation, resulting in different CUE values, especially on the Qinghai-Tibet Plateau, one of the most climate-sensitive regions in the world. However, the change trend and the intrinsic mechanism of climate effects on CUE in the future climate change scenario are not clear in this region. Based on the scheme of the coupled model intercomparison project (CMIP6), we analyze the simulation results of the five models of the scenario model intercomparison project (ScenarioMIP) under three different typical future climate scenarios, including SSP1-2.6, SSP3-7.0 and SSP5-8.5, on the Qinghai-Tibet Plateau in 2015–2100 with methods of model-averaging to average the long-term forecast of the five several well-known forecast models for three alternative climate scenarios with three radiative forcing levels to discuss the CUE changes and a structural equations modeling (SEM) approach to examine how the trends in GPP, NPP, and CUE related to different climate factors. The results show that (1) GPP and NPP demonstrated an upward trend in a long time series of 86 years, and the upward trend became increasingly substantial with the increase in radiation forcing; (2) the ecosystem CUE of the Qinghai-Tibet Plateau will decrease in the long time series in the future, and it shows a substantial decreasing trend with the increase in radiation forcing; and (3) the dominant climate factor affecting CUE is temperature of the factors included in these models, which affects CUE mainly through GPP and NPP to produce indirect effects. Temperature has a higher comprehensive effect on CUE than precipitation and CO2, which are negative effects on CUE on an annual scale. Our finding that the CUE decreases in the future suggests that we must pay more attention to the vegetation and CUE changes, which will produce great effects on the regional carbon dynamics and balance.
-
Rapid urbanization has led to the continuous deterioration of the surrounding natural ecosystem. It is important to identify the key urbanization factors that affect ecosystem services and analyze the potential effects of these factors on the ecosystem. We selected the Beijing, Tianjin, and Hebei (BTH) urban agglomeration to investigate these effects, and designed three indicators to map the urbanization level: Population density, gross domestic product (GDP) density, and the construction land proportion. Four indicators were chosen to quantify ecosystem services: Food production, carbon sequestration and oxygen production, water conservation, and soil conservation. To handle the nonlinear interactions, we used a random forest (RF) method to assess the effect of urbanization on ecosystem services in the BTH area from 2000 to 2014. Our study demonstrated that population density and economic growth were the internal driving forces affecting ecosystem services. We observed changing trends in the effect of urbanization: The effect of population density on ecosystem services increased, the effect of the proportion of construction land was consistent with population density, and the effect of GDP density on ecosystem services decreased. Our results suggest that controlling the population and GDP would significantly influence the sustainable development in large urban areas.
-
The 2001–2012 MODIS MCD12Q1 land cover data and MOD17A3 NPP data were used to calculate changes in land cover in China and annual changes in net primary productivity (NPP) during a 12-year period and to quantitatively analyze the effects of land cover change on the NPP of China’s terrestrial ecosystems. The results revealed that during the study period, no changes in land cover type occurred in 7447.31 thousand km2 of China, while the area of vegetation cover increased by 160.97 thousand km2 in the rest of the country. Forest cover increased to 20.91%, which was mainly due to the conversion of large areas of savanna (345.19 thousand km2) and cropland (178.96 thousand km2) to forest. During the 12-year study period, the annual mean NPP of China was 2.70 PgC and increased by 0.25 PgC, from 2.50 to 2.75 PgC. Of this change, 0.21 PgC occurred in areas where there was no land cover change, while 0.04 PgC occurred in areas where there was land cover change. The contributions of forest and cropland to NPP exhibited increasing trends, while the contributions of shrubland and grassland to NPP decreased. Among these land cover types, the contributions of forest and cropland to the national NPP were the greatest, accounting for 40.97% and 27.95%, respectively, of the annual total NPP. There was no significant correlation between changes in forest area and changes in total annual NPP (R2 < 0.1), while the correlation coefficient for changes in cropland area and total annual NPP was 0.48. Additionally, the area of cropland converted to other land cover types was negatively correlated with the changes in NPP, and the loss of cropland caused a reduction in the national NPP.
-
The transport of eroded soil to rivers changes the nutrient cycles of river ecosystems and has significant impacts on the regional eco-environment and human health. The Loess Plateau, a leading vegetation restoration region in China and the world, has experienced severe soil erosion and nutrient loss, however, the extent to which vegetation restoration prevents soil erosion export (to rivers) and it caused nutrient loss is unknown. To evaluate the effects of the first stage of the Grain for Green Project (GFGP) on the Loess Plateau (started in 1999 and ended in 2013), we analyzed the vegetation change trends and quantified the effects of GFGP on soil erosion export (to rivers) and it caused nutrient loss by considering soil erosion processes. The results were as follows: (1) in the first half of study period (from 1982 to 1998), the vegetation cover changed little, but after the implementation of the first stage of the GFGP (from 1999 to 2013), the vegetation cover of 75.0% of the study area showed a significant increase; (2) The proportion of eroded areas decreased from 41.8 to 26.7% as a result of the GFGP, and the erosion intensity lessened in most regions; the implementation significantly reduce the soil nutrient loss; (3) at the county level, soil erosion export could be avoided significantly by the increasing of vegetation greenness in the study area ( R = −0.49). These results illustrate the relationships among changes in vegetation cover, soil erosion and nutrient export, which could provide a reference for local government for making ecology-relative policies.
-
Wetlands are important modulators of atmospheric greenhouse gas (GHGs) concentrations. However, little is known about the magnitudes and spatiotemporal patterns of GHGs fluxes in wetlands on the Qinghai-Tibetan Plateau (QTP), the world’s largest and highest plateau. In this study, we measured soil temperature and the fluxes of carbon dioxide (CO 2 ) and methane (CH 4 ) in an alpine wetland on the QTP from April 2017 to April 2019 by the static chamber method, and from January 2017 to December 2017 by the eddy covariance (EC) method. The CO 2 and CH 4 emission measurements from both methods showed different relationships to soil temperature at different timescales (annual and seasonal). Based on such relationship patterns and soil temperature data (1960–2017), we extrapolated the CO 2 and CH 4 emissions of study site for the past 57 years: the mean CO 2 emission rate was 91.38 mg C m –2 h –1 on different measurement methods and timescales, with the range of the mean emission rate from 35.10 to 146.25 mg C m –2 h –1 , while the mean CH 4 emission rate was 2.75 mg C m –2 h –1 , with the ranges of the mean emission rate from 1.41 to 3.85 mg C m –2 h –1 . The estimated regional CO 2 and CH 4 emissions from permanent wetlands on the QTP were 94.29 and 2.37 Tg C year –1 , respectively. These results indicate that uncertainties caused by measuring method and timescale should be fully considered when extrapolating wetland GHGs fluxes from local sites to the regional level. Moreover, the results of global warming potential showed that CO 2 dominates the GHG balance of wetlands on the QTP.
-
The study was to investigate the change patterns of soil organic carbon (SOC), total nitrogen (TN), and soil C/N (C/N) in each soil sublayer along vegetation restoration in subtropical China. We collected soil samples in four typical plant communities along a restoration chronosequence. The soil physicochemical properties, fine root, and litter biomass were measured. Our results showed the proportion of SOC stocks (Cs) and TN stocks (Ns) in 20–30 and 30–40 cm soil layers increased, whereas that in 0–10 and 10–20 cm soil layers decreased. Different but well-constrained C/N was found among four restoration stages in each soil sublayer. The effect of soil factors was greater on the deep soil than the surface soil, while the effect of vegetation factors was just the opposite. Our study indicated that vegetation restoration promoted the uniform distribution of SOC and TN on the soil profile. The C/N was relatively stable along vegetation restoration in each soil layer. The accumulation of SOC and TN in the surface soil layer was controlled more by vegetation factors, while that in the lower layer was controlled by both vegetation factors and soil factors.
-
Moso bamboo forests have greater net carbon uptake benefits with increasing nitrogen deposition in the coming decades. , Atmospheric nitrogen (N) deposition affects the greenhouse gas (GHG) balance of ecosystems through the net atmospheric CO 2 exchange and the emission of non-CO 2 GHGs (CH 4 and N 2 O). We quantified the effects of N deposition on biomass increment, soil organic carbon (SOC), and N 2 O and CH 4 fluxes and, ultimately, the net GHG budget at ecosystem level of a Moso bamboo forest in China. Nitrogen addition significantly increased woody biomass increment and SOC decomposition, increased N 2 O emission, and reduced soil CH 4 uptake. Despite higher N 2 O and CH 4 fluxes, the ecosystem remained a net GHG sink of 26.8 to 29.4 megagrams of CO 2 equivalent hectare −1 year −1 after 4 years of N addition against 22.7 hectare −1 year −1 without N addition. The total net carbon benefits induced by atmospheric N deposition at current rates of 30 kilograms of N hectare −1 year −1 over Moso bamboo forests across China were estimated to be of 23.8 teragrams of CO 2 equivalent year −1 .
-
Abstract Biomass has been promoted as a promising energy resource to mitigate global climate change. To evaluate the contribution of biomass utilization to climate change mitigation under the “Grain for Green” program in Northern Shaanxi, China, a soil carbon dynamic model and a life cycle assessment model were integrated to examine the benefits of using Caragana korshinskii Kom. as an energy crop. We found that the annual dry biomass output is maintained at 0.7 Tg during the simulation period (2020–2097). Due to the compensatory effect of biomass regrowth, the global warming potential of biomass‐derived CO 2 emissions is approximately 0.045; therefore, the total annual biogenic CO 2 emission is 57,211 ± 6,168 Mg CO 2 eq. The total annual life cycle CO 2 emissions approach 867,072 Mg CO 2 eq yr −1 . Under the scenario of no biomass removal, final carbon storage ranges from 15.7 to 19.3 TgC, and the highest carbon sequestration rate is 0.47 TgC yr −1 . In comparison with the no biomass removal scenario, the carbon sequestration rate (close to 0 MgC yr −1 ) in the biomass utilization scenario indicates a carbon loss; however, a portion of the carbon loss (31.39–62.09%) can be offset by carbon emission reductions from the substitution of fossil fuels.
-
Abstract The effects of nitrogen (N) deposition on soil organic carbon (C) and greenhouse gas (GHG) emissions in terrestrial ecosystems are the main drivers affecting GHG budgets under global climate change. Although many studies have been conducted on this topic, we still have little understanding of how N deposition affects soil C pools and GHG budgets at the global scale. We synthesized a comprehensive dataset of 275 sites from multiple terrestrial ecosystems around the world and quantified the responses of the global soil C pool and GHG fluxes induced by N enrichment. The results showed that the soil organic C concentration and the soil CO 2 , CH 4 and N 2 O emissions increased by an average of 3.7%, 0.3%, 24.3% and 91.3% under N enrichment, respectively, and that the soil CH 4 uptake decreased by 6.0%. Furthermore, the percentage increase in N 2 O emissions (91.3%) was two times lower than that (215%) reported by Liu and Greaver ( Ecology Letters , 2009, 12:1103–1117). There was also greater stimulation of soil C pools (15.70 kg C ha −1 year −1 per kg N ha −1 year −1 ) than previously reported under N deposition globally. The global N deposition results showed that croplands were the largest GHG sources (calculated as CO 2 equivalents), followed by wetlands. However, forests and grasslands were two important GHG sinks. Globally, N deposition increased the terrestrial soil C sink by 6.34 Pg CO 2 /year. It also increased net soil GHG emissions by 10.20 Pg CO 2 ‐Geq (CO 2 equivalents)/year. Therefore, N deposition not only increased the size of the soil C pool but also increased global GHG emissions, as calculated by the global warming potential approach.
-
Abstract Plants use only a fraction of their photosynthetically derived carbon for biomass production (BP). The biomass production efficiency (BPE), defined as the ratio of BP to photosynthesis, and its variation across and within vegetation types is poorly understood, which hinders our capacity to accurately estimate carbon turnover times and carbon sinks. Here, we present a new global estimation of BPE obtained by combining field measurements from 113 sites with 14 carbon cycle models. Our best estimate of global BPE is 0.41 ± 0.05, excluding cropland. The largest BPE is found in boreal forests (0.48 ± 0.06) and the lowest in tropical forests (0.40 ± 0.04). Carbon cycle models overestimate BPE, although models with carbon–nitrogen interactions tend to be more realistic. Using observation‐based estimates of global photosynthesis, we quantify the global BP of non‐cropland ecosystems of 41 ± 6 Pg C/year. This flux is less than net primary production as it does not contain carbon allocated to symbionts, used for exudates or volatile carbon compound emissions to the atmosphere. Our study reveals a positive bias of 24 ± 11% in the model‐estimated BP (10 of 14 models). When correcting models for this bias while leaving modeled carbon turnover times unchanged, we found that the global ecosystem carbon storage change during the last century is decreased by 67% (or 58 Pg C).