Votre recherche
Résultats 457 ressources
-
Abstract In sub-Saharan Africa (SSA), precipitation is an important driver of agricultural production. In Uganda, maize production is essentially rain-fed. However, due to changes in climate, projected maize yield targets have not often been met as actual observed maize yields are often below simulated/projected yields. This outcome has often been attributed to parallel gaps in precipitation. This study aims at identifying maize yield and precipitation gaps in Uganda for the period 1998–2017. Time series historical actual observed maize yield data (hg/ha/year) for the period 1998–2017 were collected from FAOSTAT. Actual observed maize growing season precipitation data were also collected from the climate portal of World Bank Group for the period 1998–2017. The simulated or projected maize yield data and the simulated or projected growing season precipitation data were simulated using a simple linear regression approach. The actual maize yield and actual growing season precipitation data were now compared with the simulated maize yield data and simulated growing season precipitation to establish the yield gaps. The results show that three key periods of maize yield gaps were observed (period one: 1998, period two: 2004–2007 and period three: 2015–2017) with parallel precipitation gaps. However, in the entire series (1998–2017), the years 2008–2009 had no yield gaps yet, precipitation gaps were observed. This implies that precipitation is not the only driver of maize yields in Uganda. In fact, this is supported by a low correlation between precipitation gaps and maize yield gaps of about 6.3%. For a better understanding of cropping systems in SSA, other potential drivers of maize yield gaps in Uganda such as soils, farm inputs, crop pests and diseases, high yielding varieties, literacy, and poverty levels should be considered.
-
Abstract Terrestrial ecosystems provide multiple services interacting in complex ways. However, most ecosystem services (ESs) models (e.g., InVEST and ARIES) ignored the relationships among ESs. Process‐based models can overcome this limitation, and the integration of ecological models with remote sensing data could greatly facilitate the investigation of the complex ecological processes. Therefore, based on the Carbon and Exchange between Vegetation, Soil, and Atmosphere (CEVSA) models, we developed a process‐based ES model (CEVSA‐ES) integrating remotely sensed leaf area index to evaluate four important ESs (i.e., productivity provision, carbon sequestration, water retention, and soil retention) at annual timescale in China. Compared to the traditional terrestrial biosphere models, the main innovation of CEVSA‐ES model was the consideration of soil erosion processes and its impact on carbon cycling. The new version also improved the carbon‐water cycle algorithms. Then, the Sobol and DEMC methods that integrated the CEVSA‐ES model with nine flux sites comprising 39 site‐years were used to identify and optimize parameters. Finally, the model using the optimized parameters was validated at 26 field sites comprising 135 site‐years. Simulation results showed good fits with ecosystem processes, explaining 95%, 92%, 76%, and 65% interannual variabilities of gross primary productivity, ecosystem respiration, net ecosystem productivity, and evapotranspiration, respectively. The CEVSA‐ES model performed well for productivity provision and carbon sequestration, which explained 96% and 81% of the spatial‐temporal variations of the observed annual productivity provision and carbon sequestration, respectively. The model also captured the interannual trends of water retention and soil erosion for most sites or basins. , Plain Language Summary Terrestrial ecosystems simultaneously provide multiple ecosystem services (ESs). The common environmental drivers and internal mechanisms lead to nonlinear and dynamic relationships among ESs. Assessing the spatiotemporal changes of ESs have recently emerged as an element of ecosystem management and environmental policies. However, appropriate methods linking ESs to biogeochemical and biophysical processes are still lacking. In this study, we developed a process‐based model Carbon and Exchange between Vegetation, Soil, and Atmosphere (CEVSA‐ES) that integrates remote sensing data for evaluating ESs. We first described the model framework and detailed algorithms of the processes related to ESs. Then a model‐fusion method was applied to optimize parameters to which the model was sensitive and to improve model performance based on multi‐source observational data. The calibrated CEVSA‐ES model showed good performance for carbon and water fluxes (i.e., gross primary productivity, ecosystem respiration, net ecosystem productivity, and evapotranspiration). The CEVSA‐ES model performed well for productivity provision, and carbon sequestration. It also captured the interannual trends of water retention and soil erosion for most sites or basins in Chinese terrestrial ecosystems. The CEVSA‐ES model not only has the potential to improve the accuracy of simulated ESs, but also can capture the relationships among ESs, which could support the trade‐offs and synergies among ESs. , Key Points We developed an ecosystem service model Carbon and Exchange between Vegetation, Soil, and Atmosphere‐ecosystem services (CEVSA‐ES) that integrates ecosystem processes with satellite‐based data Accounting for soil retention/erosion and its impact on carbon cycling was the main difference from other process‐based models The CEVSA‐ES model with optimized parameters explained 47%–96% of the spatial and temporal variations of four ecosystem services in China
-
Abstract Aim Tree species diversity can increase the stability of ecosystem productivity by increasing mean productivity and/or reducing the standard deviation in productivity. However, stand structure, environmental and socio‐economic conditions influence plant diversity and might strongly influence the relationships between diversity and stability in natural forest communities. The relative importance of these factors for community stability remains poorly understood in complex (species‐rich) subtropical forests. Location Subtropical area of southern China. Time period 1999–2014. Major taxa studied Forest trees. Methods We conducted bivariate analyses to examine the mechanisms (overyielding and species asynchrony) underlying the effects of diversity on stability. Multiple regression models were then used to determine the relative importance of tree species diversity, stand structure, socio‐economic factors and environmental conditions on stability. Structural equation modelling was used to disentangle how these variables directly and/or indirectly affect forest stability. Results Tree species richness exerted a positive effect on stability through overyielding and species asynchrony, and this effect was stronger in mountainous forests than in hilly forests. Species richness positively affected the mean productivity, whereas species asynchrony negatively affected the variability in productivity, hence increasing forest stability. Structural diversity also had a positive effect, whereas population density had a negative effect on stability. Precipitation variability and slope mainly had indirect influences on stability through their effects on tree species richness. Main conclusions Overall, tree species diversity governed stability; however, stand structure, socio‐economic conditions and environmental conditions also played an important role in shaping stability in these forests. Our work highlights the importance of regulating stand structure and socio‐economic factors in forest management and biodiversity conservation, to maintain and enhance their stability to provide ecosystem services in the face of unprecedented anthropogenic activities and global climate change.
-
Abstract Background Vegetation phenology research has largely focused on temperate deciduous forests, thus limiting our understanding of the response of evergreen vegetation to climate change in tropical and subtropical regions. Results Using satellite solar-induced chlorophyll fluorescence (SIF) and MODIS enhanced vegetation index (EVI) data, we applied two methods to evaluate temporal and spatial patterns of the end of the growing season (EGS) in subtropical vegetation in China, and analyze the dependence of EGS on preseason maximum and minimum temperatures as well as cumulative precipitation. Our results indicated that the averaged EGS derived from the SIF and EVI based on the two methods (dynamic threshold method and derivative method) was later than that derived from gross primary productivity (GPP) based on the eddy covariance technique, and the time-lag for EGS sif and EGS evi was approximately 2 weeks and 4 weeks, respectively. We found that EGS was positively correlated with preseason minimum temperature and cumulative precipitation (accounting for more than 73% and 62% of the study areas, respectively), but negatively correlated with preseason maximum temperature (accounting for more than 59% of the study areas). In addition, EGS was more sensitive to the changes in the preseason minimum temperature than to other climatic factors, and an increase in the preseason minimum temperature significantly delayed the EGS in evergreen forests, shrub and grassland. Conclusions Our results indicated that the SIF outperformed traditional vegetation indices in capturing the autumn photosynthetic phenology of evergreen forest in the subtropical region of China. We found that minimum temperature plays a significant role in determining autumn photosynthetic phenology in the study region. These findings contribute to improving our understanding of the response of the EGS to climate change in subtropical vegetation of China, and provide a new perspective for accurately evaluating the role played by evergreen vegetation in the regional carbon budget.
-
Abstract Digital leaf physiognomy (DLP) is considered as one of the most promising methods for estimating past climate. However, current models built using the DLP data set still lack precision, especially for mean annual precipitation (MAP). To improve predictive power, we developed five machine learning (ML) models for mean annual temperature (MAT) and MAP respectively, and then tested the precision of these models and some of their averaging compared with that obtained from other models. The precision of all models was assessed using a repeated stratified 10‐fold cross‐validation. For MAT, three combinations of models ( R 2 = .77) presented moderate improvements in precision over the multiple linear regression (MLR) model ( R 2 = .68). For log e (MAP), the averaging of the support vector machine (SVM) and boosting models improved the R 2 from .19 to .63 compared with that of the MLR model. For MAP, the R 2 of this model combination was 0.49, which was much better than that of the artificial neural network (ANN) model ( R 2 = .21). Even the bagging model, which had the lowest R 2 (.37) for log e (MAP), demonstrated better precision ( R 2 = .27) for MAP. Our palaeoclimate estimates for nine fossil floras were also more accurate, because they were in better agreement with independent paleoclimate evidence. Our study confirms that our ML models and their averaging can improve paleoclimatic reconstructions, providing a better understanding of the relationship between climate and leaf physiognomy.
-
Abstract Elevation gradients are frequently treated as useful space‐for‐time substitutions for inferring trait variations in response to different environmental conditions. The independent variations in leaf traits in response to elevation are well understood, but far less is known about trait covariation and its controls. This limits our understanding of the principles and mechanisms of leaf trait covariation, especially along elevation gradients in subtropical forests. Here, we studied the covariation among seven functional traits, including leaf size (LS), leaf nitrogen per unit mass ( N mass ), leaf nitrogen per unit area ( N area ), leaf mass per area (LMA), leaf dry matter content (LDMC), leaf thickness (LT) and the leaf internal‐to‐ambient CO 2 ratio ( C i : C a , termed χ ). Sampling was conducted on 41 species in a subtropical forest on Mount Huangshan, China, and the data were analyzed using multivariate analysis and variance partitioning procedures. We found that (a) The first three principal components captured 79% of the total leaf trait covariation, which was caused mainly by within site differences; (b) N mass and LDMC were positively correlated with soil water content (SW) and negatively correlated with vapor pressure deficit (VPD), while χ showed negative relationships with elevation; and (c) 78% of the variation in the studied plant functional traits could be explained by climate, soil, and family controls in combination, while family distribution was the most important determining factor for trait covariation along the elevation gradient. Our findings provide relevant insights into plant adaptation to environmental gradients and present useful guidelines for ecosystem management and planning. , Plain Language Summary Changes of plant functional traits along elevation gradient are important indicators which reflect the behaviors and adaptations of plants. In this study we first analyzed the dominant signals of seven leaf functional traits and then we depicted the response of seven traits to changing elevation environments, and finally we quantified the contributions of climate, soil, and vegetation distribution. Our findings validate the hypothesis that trait covariation, and thus adaptation, occurs in response to the elevation gradients that most plant species experience. , Key Points The first three principal components captured 79% of the total leaf trait covariation Leaf nitrogen content ( N mass ) and leaf dry mass content (LDMC) were positively correlated with soil water content and negatively correlated with vapor pressure deficit Vegetation (family) distribution was the most important determining factor for trait covariation along the elevation gradient
-
Abstract Background Changes in foliar nitrogen (N) and phosphorus (P) stoichiometry play important roles in predicting the effects of global change on ecosystem structure and function. However, there is substantial debate on the effects of P addition on foliar N and P stoichiometry, particularly under different levels of N addition. Thus, we conducted a global meta-analysis to investigate how N addition alters the effects of P addition on foliar N and P stoichiometry across different rates and durations of P addition and plant growth types based on more than 1150 observations. Results We found that P addition without N addition increased foliar N concentrations, whereas P addition with N addition had no effect. The positive effects of P addition on foliar P concentrations were greater without N addition than with N addition. Additionally, the effects of P addition on foliar N, P and N:P ratios varied with the rate and duration of P addition. In particular, short-term or low-dose P addition with and without N addition increased foliar N concentration, and the positive effects of short-term or low-dose P addition on foliar P concentrations were greater without N addition than with N addition. The responses of foliar N and P stoichiometry of evergreen plants to P addition were greater without N addition than with N addition. Moreover, regardless of N addition, soil P availability was more effective than P resorption efficiency in predicting the changes in foliar N and P stoichiometry in response to P addition. Conclusions Our results highlight that increasing N deposition might alter the response of foliar N and P stoichiometry to P addition and demonstrate the important effect of the experimental environment on the results. These results advance our understanding of the response of plant nutrient use efficiency to P addition with increasing N deposition.