Votre recherche
Résultats 2 ressources
-
Climate change is likely to lead to an increased frequency of droughts and floods, both of which are implicated in large-scale carbon allocation and tree mortality worldwide. Non-structural carbohydrates (NSCs) play an important role in tree survival under stress, but how NSC allocation changes in response to drought or waterlogging is still unclear. We measured soluble sugars (SS) and starch in leaves, twigs, stems and roots of Robinia pseudoacacia L. seedlings that had been subjected to a gradient in soil water availability from extreme drought to waterlogged conditions for a period of 30 days. Starch concentrations decreased and SS concentrations increased in tissues of R. pseudoacacia seedlings, such that the ratio of SS to starch showed a progressive increase under both drought and waterlogging stress. The strength of the response is asymmetric, with the largest increase occurring under extreme drought. While the increase in SS concentration in response to extreme drought is the largest in roots, the increase in the ratio of SS to starch is the largest in leaves. Individual components of SS showed different responses to drought and waterlogging across tissues: glucose concentrations increased significantly with drought in all tissues but showed little response to waterlogging in twigs and stems; sucrose and fructose concentrations showed marked increases in leaves and roots in response to drought but a greater response to drought and waterlogging in stems and twigs. These changes are broadly compatible with the roles of individual SS under conditions of water stress. While it is important to consider the role of NSC in buffering trees against mortality under stress, modelling this behaviour is unlikely to be successful unless it accounts for different responses within organs and the type of stress involved.
-
Summary Plant functional ecology requires the quantification of trait variation and its controls. Field measurements on 483 species at 48 sites across China were used to analyse variation in leaf traits, and assess their predictability. Principal components analysis ( PCA ) was used to characterize trait variation, redundancy analysis ( RDA ) to reveal climate effects, and RDA with variance partitioning to estimate separate and overlapping effects of site, climate, life‐form and family membership. Four orthogonal dimensions of total trait variation were identified: leaf area ( LA ), internal‐to‐ambient CO 2 ratio (χ), leaf economics spectrum traits (specific leaf area ( SLA ) versus leaf dry matter content ( LDMC ) and nitrogen per area ( N area )), and photosynthetic capacities ( V cmax , J max at 25°C). LA and χ covaried with moisture index. Site, climate, life form and family together explained 70% of trait variance. Families accounted for 17%, and climate and families together 29%. LDMC and SLA showed the largest family effects. Independent life‐form effects were small. Climate influences trait variation in part by selection for different life forms and families. Trait values derived from climate data via RDA showed substantial predictive power for trait values in the available global data sets. Systematic trait data collection across all climates and biomes is still necessary.