Votre recherche
Résultats 12 ressources
-
Abstract Based on the analysis of fish otolith assemblages from surface sediments of the Lomonosov Ridge (Arctic Ocean), we demonstrate that the very low Holocene sedimentation rates and winnowing of fine sediments result in the mixing of the whole Holocene populations at the sediment surface. Specimens from the Marine Isotope Stage (MIS) 3 or older could even be recovered in the surface due to a sedimentary hiatus at some locations in the central Arctic during the last glacial maximum. Two examples illustrate that 14 C‐stratigraphies from planktic foraminifers in underlying cored sediments reflect the mixing between Holocene and MIS 3 or older populations, thus invalidating continuous age‐depth inferences based on 14 C ages. Hence, much caution is required when attempting to set paleoceanographic reconstructions based on 14 C chronologies in a low sediment accumulation rate environment such as the central Arctic Ocean. Already published paleoceanographic reconstructions from this area might thus require some revisions. , Plain Language Summary Radiocarbon ages of microfossils (fish otoliths) collected at the surface sediments of the Lomonosov Ridge, in the central Arctic Ocean, indicate that all populations that developed during the present interglacial are mixed within the approximately 1 cm‐thick surface layer. Fossil assemblages occasionally include specimens from older warm intervals. The stacking of fossil spanning thousands of years is due to the very low sediment accumulation rate of the area, the post‐depositional winnowing of fine sediments and mixing by benthic organisms. These process result in the impossibility to document the faunal evolution in the central Arctic Ocean during the last few tens of thousands of years using such fossils. , Key Points Fish otolith radiocarbon age distributions in surface sediments illustrate the mixing of Holocene and pre‐Last Glacial Maximum populations Low sedimentation rates, particle winnowing and sedimentary gaps may impact microfossil mixing and 14 C chronologies Published paleoclimate/paleoceanographic records from similar sites might thus require some reinterpretation
-
Abstract Inconsistencies between Holocene climate reconstructions and numerical model simulations question the robustness of climate models and proxy temperature records. Climate reconstructions suggest an early-middle Holocene Thermal Maximum (HTM) followed by gradual cooling, whereas climate models indicate continuous warming. This discrepancy either implies seasonal biases in proxy-based climate reconstructions, or that the climate model sensitivity to forcings and feedbacks needs to be reevaluated. Here, we analyze a global database of Holocene paleotemperature records to investigate the spatiotemporal structure of the HTM. Continental proxy records at mid and high latitudes of the Northern Hemisphere portray a “classic” HTM (8–4 ka). In contrast, marine proxy records from the same latitudes reveal an earlier HTM (11–7ka), while a clear temperature anomaly is missing in the tropics. The results indicate a heterogeneous response to climate forcing and highlight the lack of globally synchronous HTM.
-
Abstract Postglacial changes in sea-surface conditions, including sea-ice cover, summer temperature, salinity, and productivity were reconstructed from the analyses of dinocyst assemblages in core S2528 collected in the northwestern Barents Sea. The results show glaciomarine-type conditions until about 11,300 ± 300 cal yr BP and limited influence of Atlantic water at the surface into the Barents Sea possibly due to the proximity of the Svalbard-Barents Sea ice sheet. This was followed by a transitional period generally characterized by cold conditions with dense sea-ice cover and low-salinity pulses likely related to episodic freshwater or meltwater discharge, which lasted until 8700 ± 700 cal yr BP. The onset of “interglacial” conditions in surface waters was marked by a major change in dinocyst assemblages, from dominant heterotrophic to dominant phototrophic taxa. Until 4100 ± 150 cal yr BP, however, sea-surface conditions remained cold, while sea-surface salinity and sea-ice cover recorded large amplitude variations. By ~4000 cal yr BP optimum sea-surface temperature of up to 4°C in summer and maximum salinity of ~34 psu suggest enhanced influence of Atlantic water, and productivity reached up to 150 gC/m 2 /yr. After 2200 ± 1300 cal yr BP, a distinct cooling trend accompanied by sea-ice spreading characterized surface waters. Hence, during the Holocene, with exception of an interval spanning about 4000 to 2000 cal yr BP, the northern Barents Sea experienced harsh environments, relatively low productivity, and unstable conditions probably unsuitable for human settlements.
-
Abstract Declining sea ice is expected to change the Arctic's physical and biological systems in ways that are difficult to predict. This study used stable isotope compositions (δ 13 C and δ 15 N) of archaeological, historic, and modern Pacific walrus ( Odobenus rosmarus divergens ) bone collagen to investigate the impacts of changing sea ice conditions on walrus diet during the last ~4000 yr. An index of past sea ice conditions was generated using dinocyst-based reconstructions from three locations in the northeastern Chukchi Sea. Archaeological walrus samples were assigned to intervals of high and low sea ice, and δ 13 C and δ 15 N were compared across ice states. Mean δ 13 C and δ 15 N values were similar for archaeological walruses from intervals of high and low sea ice; however, variability among walruses was greater during low-ice intervals, possibly indicating decreased availability of preferred prey. Overall, sea ice conditions were not a primary driver of changes in walrus diet. The diet of modern walruses was not consistent with archaeological low sea ice intervals. Rather, the low average trophic position of modern walruses (primarily driven by males), with little variability among individuals, suggests that trophic changes to this Arctic ecosystem are still underway or are unprecedented in the last ~4000 yr.
-
ABSTRACT The Arctic Ocean is one of the last frontiers on Earth with many unknowns about its geological and climate history and considerable speculation on its role in the Earth's climate and ocean system. It has been proposed recently that it was occupied by a freshwater body of more than 9.5 × 10 6 km 3 underneath a thick ice mass during part of glacial isotopic stages 6 and 4. We argue that such a dramatic scenario, implying replacement of marine waters by freshwater throughout the entire Arctic Ocean and Nordic Seas, is physically implausible. The very low 230 Th excesses ( 230 Th xs ) observed in sediments from these intervals were used as evidence for the presence of a U‐depleted overlying freshwater column. We show here that they may simply result from short, sporadic sedimentary pulses, below multiyear sea ice or ice shelves, linked to deglacial ice streaming and surging events interrupting long‐duration sedimentary gaps. Due to this sporadic sedimentation regime, interpolating time from 230 Th xs data or between benchmark ages in sedimentary sequences would simply be erroneous.
-
Abstract Reconstructions of ocean primary productivity (PP) help to explain past and present biogeochemical cycles and climate changes in the oceans. We document PP variations over the last 50 kyr in a currently oligotrophic subtropical region, the Gulf of Cadiz. Data combine refined results from previous investigations on dinocyst assemblages, alkenones, and stable isotopes ( 18 O, 13 C) in planktonic ( Globigerina bulloides ) and endobenthic ( Uvigerina mediterranea ) foraminifera from cores MD04‐2805 CQ and MD99‐2339, with new isotopic measurements on epibenthic ( Cibicides pachyderma ‐ Cibicidoides wuellerstorfi ) foraminifera and dinocyst‐based estimates of PP using the new n = 1,968 modern database. We constrain PP variations and export production by integrating qualitative information from bioindicators with dinocyst‐based quantitative reconstructions such as PP and seasonal sea surface temperature and information about remineralization from the benthic Δδ 13 C (difference between epibenthic and endobenthic foraminiferal δ 13 C signatures). This study also includes new information on alkenone‐based SST and total organic carbon which provides insights into the relationship between past regional hydrological activity and PP regime change. We show that PP, carbon export, and remineralization were generally high in the NE subtropical Atlantic Ocean during the last glacial period and that the Last Glacial Maximum (LGM) had lower Δδ 13 C than the Heinrich Stadials with sustained high PP, likely allowing enhanced carbon sequestration. We link these PP periods to the dynamics of upwelling, active almost year‐round during sadials, but restricted to spring‐summer during interstadials and LGM, like today. During interstadials, nutrient advection through freshwater inputs during autumn‐winter needs also to be considered to fully understand PP regimes. , Key Points Productivity (PP) in the Gulf of Cadiz is dependent on the seasonality control for both upwelling and nutrient‐enriched freshwater inputs We show generally high PP, carbon export, and remineralization during the last glacial period at the study site The Last Glacial Maximum had lower Δδ 13 C than the Heinrich Stadials with sustained high PP likely allowing enhanced carbon sequestration
-
Abstract Climate changes over the past two millennia in the central part of the Gulf of St. Lawrence are documented in this paper with the aim of determining and understanding the natural climate variability and the impact of anthropogenic forcing at a regional scale. The palynological content (dinocysts, pollen, and spores) of the composite marine sediment core MSM46-03 collected in the Laurentian Channel was used to reconstruct oceanographic and climatic changes with a multidecadal temporal resolution. Sea-surface conditions, including summer salinity and temperature, sea-ice cover, and primary productivity, were reconstructed from dinocyst assemblages. Results revealed a remarkable cooling trend of about 4°C after 1230 cal yr BP (720 CE) and a culmination with a cold pulse dated to 170–40 cal yr BP (1780–1910 CE), which likely corresponds to the regional signal of the Little Ice Age. This cold interval was followed by a rapid warming of about 3°C. In the pollen assemblages, the decrease of Pinus abundance over the past 1700 yr suggests changes in wind regimes, likely resulting from increased southerly incursions of cold and dry Arctic air masses into southeastern Canada.