Votre recherche
Résultats 193 ressources
-
Although floods, as well as other natural disasters, can be considered as relevant causes of intra-generational inequalities, frequent catastrophes and the resulting damage to the territory can be seen as a consequence of a generalized indifference about future. Land protection is one of the societal issues typically concerning inter-generational solidarity, involving the administrative system in the implementation of proactive policies. In the last three decades, the widespread demand for subsidiarity has made local communities more and more independent, so that attention to the long-term effects—typically concerning the territorial system as a whole at geographical scale—has been dispersed, and the proactive policies that come from the central government have become more ineffective. Regarding the case of the 2009 flood in the Fiumedinisi-Capo Peloro river basin in North Eastern Sicily, we propose an economic valuation of the land protection policy. This valuation, compared to the cost of recovery of the damaged areas, can provide helpful information on the decision-making process concerning the trade-off between reactive and proactive land policy. The economic value of land protection was calculated by means of the method of the imputed preferences, to obtain a real measure of the social territorial value from the point of view of the harmony between social system and environment. This method consists of an estimate based on the attribution of the expenditures according to the importance of the different areas. Since the value of land protection has been calculated by discounting the expenditures stream, some considerations about the economic significance of the proactive policy are referred to the role played by the social discount rate in the inter-temporal economic calculation.
-
Abstract A major challenge in ecology is to link patterns and processes across different spatial and temporal scales. Flood plains are ideal model ecosystems to study (i) the processes that create and maintain environmental heterogeneity and (ii) to quantify the effects of environmental heterogeneity on ecosystem functioning and biodiversity. Fluvial processes of cut‐and‐fill alluviation create new channels, bars and benches within a flood plain that in turn provides new surface for subsequent vegetative recruitment and growth resulting in a shifting mosaic of interconnected aquatic and terrestrial habitat patches. Composition and spatial arrangement of these habitat patches control the movement of organisms and matter among adjacent patches; and the capacity of a habitat to process matter depends on the productivity of adjacent patches and on the exchange among these patches. The exchange of matter and organisms among habitats of different age and productivity is often pulsed in nature. Small pulses of a physical driver (e.g. short‐term increase in flow) can leach large amounts of nutrients thereby stimulating primary production in adjacent aquatic patches, or trigger mass emergence of aquatic insects that may in turn impact recipient terrestrial communities. Hence, biodiversity in a river corridor context is hierarchically structured and strongly linked to the dynamic biophysical processes and feedback mechanisms that drive these chronosequences over broad time and space scales. Today, the active conversion of degraded ecosystems back to a more heterogeneous and dynamic state has become an important aspect of restoration and management where maintaining or allowing a return to the shifting habitat mosaic dynamism is the goal with the expected outcome greater biodiversity and clean water among other valuable ecosystem goods and services. Copyright © 2009 John Wiley & Sons, Ltd.
-
Significant flood damage occurred near Montreal in May 2017, as flow from the upstream Ottawa River basin (ORB) reached its highest levels in over 50years. Analysis of observations and experiments performed with the fifth generation Canadian Regional Climate Model (CRCM5) show that much above average April precipitation over the ORB, a large fraction of which fell as rain on an existing snowpack, increased streamflow to near record-high levels. Subsequently, two heavy rainfall events affected the ORB in the first week of May, ultimately resulting in flooding. This heavy precipitation during April and May was linked to large-scale atmospheric features. Results from sensitivity experiments with CRCM5 suggest that the mass and distribution of the snowpack have a major influence on spring streamflow in the ORB. Furthermore, the importance of using an appropriate frozen soil parameterization when modelling spring streamflows in cold regions was confirmed. Event attribution using CRCM5 showed that events such as the heavy April 2017 precipitation accumulation over the ORB are between two and three times as likely to occur in the present-day climate as in the pre-industrial climate. This increase in the risk of heavy precipitation is linked to increased atmospheric moisture due to warmer temperatures in the present-day climate, a direct consequence of anthropogenic emissions, rather than changes in rain-generating mechanisms or circulation patterns. Warmer temperatures in the present-day climate also reduce early-spring snowpack in the ORB, offsetting the increase in rainfall and resulting in no discernible change to the likelihood of extreme surface runoff.
-
Despite the prognoses of the effects of global warming (e.g., rising sea levels, increasing river discharges), few international studies have addressed how flood preparedness should be stimulated among private citizens. This article aims to predict Dutch citizens’ flood preparedness intentions by testing a path model, including previous flood hazard experiences, trust in public flood protection, and flood risk perceptions (both affective and cognitive components). Data were collected through questionnaire surveys in two coastal communities ( n = 169, n = 244) and in one river area community ( n = 658). Causal relations were tested by means of structural equation modeling (SEM). Overall, the results indicate that both cognitive and affective mechanisms influence citizens’ preparedness intentions. First, a higher level of trust reduces citizens’ perceptions of flood likelihood, which in turn hampers their flood preparedness intentions (cognitive route). Second, trust also lessens the amount of dread evoked by flood risk, which in turn impedes flood preparedness intentions (affective route). Moreover, the affective route showed that levels of dread were especially influenced by citizens’ negative and positive emotions related to their previous flood hazard experiences. Negative emotions most often reflected fear and powerlessness, while positive emotions most frequently reflected feelings of solidarity. The results are consistent with the affect heuristic and the historical context of Dutch flood risk management. The great challenge for flood risk management is the accommodation of both cognitive and affective mechanisms in risk communications, especially when most people lack an emotional basis stemming from previous flood hazard events.
-
Abstract Disasters worldwide tend to affect the poorest more severely and increase inequality. Brazil is one of the countries with high income‐inequality rates and has unplanned urbanization issues and an extensive disaster risk profile with little knowledge on how those disasters affect people's welfare. Thus, disasters often hit the poorest hardest, increasing the country's income inequality and poverty rates. This study proposes a method to assess the impact of floods on households spatially based on their income levels by conducting flood analysis and income analysis. The method is applied to the Itapocu River basin (IRB) located in Santa Catarina State, Brazil. The flood is assessed by conducting rainfall analysis and hydrological simulation and generating flood inundation maps. The income is evaluated using downloaded 2010 census data and a dasymetric approach. Flood and income information is combined to analyze flood‐impacted households by income level and flood return period. The results confirm the initial assumption that flood events in the IRB are more likely to affect the lowest‐income households rather than the highest‐income levels, thus, increasing the income inequality.
-
Abstract A timely and cost-effective method of creating inundation maps could assist first responders in allocating resources and personnel in the event of a flood or in preparation of a future disaster. The Height Above Nearest Drainage (HAND) model could be implemented into an on-the-fly flood mapping application for a Canada-wide service. The HAND model requires water level (m) data inputs while many sources of hydrological data in Canada only provide discharge (m 3 /sec) data. Synthetic rating curves (SRCs), created using river geometry/characteristics and the Manning’s formula, could be utilized to provide an approximate water level given a discharge input. A challenge with creating SRCs includes representing how multiple different land covers will slow impact flow due to texture and bulky features (i.e., smooth asphalt versus rocky river channel); this relates to the roughness coefficient ( n ). In our study, two methods of representing multiple n values were experimented with (a weighted method and a minimum-median method) and were compared to using a fixed n method. A custom ArcGIS tool, Canadian Estimator of Ratings Curves using HAND and Discharge (CERC-HAND-D), was developed to create SRCs using all three methods. Control data were sourced from gauge stations across Canada in the form of rating curves. Results indicate that in areas with medium to medium–high river gradients (S > 0.002 m/m) or with river reaches under 5 km, the CERC-HAND-D tool creates more accurate SRCs (NRMSE = 3.7–8.8%, Percent Bias = −7.8%—9.4%), with the minimum-median method being the preferred n method.
-
River floods usually do not stop at administrative borders. The respective location of municipalities along a river creates different options and dependencies, commonly referred to as upstream–downstream relations. This regional dimension of flood risk calls for catchment‐based approaches in flood risk management as advocated by the EU Flood Directive. In this article, we present and assess the case of an intermunicipal cooperation in Austria which aims to alleviate flood risk and coordinate planning activities based on a catchment approach. The authors apply an established model of water governance to characterise the governance features and to assess the governance qualities and governance capacities of the intermunicipal cooperation. Findings show that the selected case qualifies as a suitable governance instrument to address the main policy objectives. Existing functional ties, shared (flooding) experiences, and mutual trust mark key success factors, indicating that proximity – in its many different forms – is crucial to overcome power asymmetries and spatial misfits in catchment‐based flood risk management. However, intermunicipal cooperation is weak when it comes to ensuring binding land use regulations, showing the need for a complementary use of governance arrangements and formal instruments of regional land use planning in flood risk management.
-
In June 2005, the headwater tributaries of the Saskatchewan River Basin in the western Canadian province of Alberta were struck by four heavy rain events. Runoff from the rainfalls resulted in three floods which extended from Alberta through the provinces of Saskatchewan and Manitoba, causing at least four deaths and property damages of CAD $400 million.
-
The impact of climate change on the frequency distribution of spring floods in the Red River basin is investigated. Several major floods in the last couple of decades have caused major damages and inconvenience to people living in the Red River flood plain south of Winnipeg, and have raised the question of whether climate change is at least partly responsible for what appears to be more frequent occurrences of high spring runoff. To investigate whether this is the case, a regression model is used to associate spring peak flow at the US–Canada border with predictor variables that include antecedent precipitation in the previous fall (used as a proxy for soil moisture at freeze-up), winter snow accumulation and spring precipitation. Data from the Coupled Model Intercomparison Project – Phase 5 (CMIP5) are used to derive information about possible changes to the predictor variables in the future, and this information is then used to derive flood distributions for future climate conditions. While mean monthly...
-
In late June 2013, heavy rainfall and rapidly melting alpine snow triggered flooding throughout much of the southern half of Alberta. Heavy rainfall commenced on 19 June and continued for 3 days. When the event was over, more than 200 mm and as much as 350 mm of precipitation had fallen over the Front Ranges of the Canadian Rocky Mountains. Tributaries to the Bow River including the Ghost, Kananaskis, Elbow, Sheep and Highwood, and many of their tributaries, all reached flood levels. The storm had a large spatial extent causing flooding to the north and south in the Red Deer and Oldman Basins, and also to the west in the Elk River in British Columbia. Convergence of the nearly synchronous floodwaters downstream in the South Saskatchewan River system caused record high releases from Lake Diefenbaker through Gardiner Dam. Dam releases in Alberta and Saskatchewan attenuated the downstream flood peak such that only moderate flooding occurred in Saskatchewan and Manitoba. More than a dozen municipalities decla...
-
In Canada, climate change is expected to increase the extreme precipitation events by magnitude and frequency, leading to more intense and frequent river flooding. In this study, we attempt to map the flood hazard and damage under projected climate scenarios (2050 and 2080). The study was performed in the two most populated municipalities of the Petite Nation River Watershed, located in southern Quebec (Canada). The methodology follows a modelling approach, in which climate projections are derived from the Hydroclimatic Atlas of Southern Quebec following two representative concentration pathways (RCPs) scenarios, i.e., RCP 4.5 and RCP 8.5. These projections are used to predict future river flows. A frequency analysis was carried out with historical data of the peak flow (period 1969–2018) to derive different return periods (2, 20, and 100 years), which were then fed into the GARI tool (Gestion et Analyse du Risque d’Inondation). This tool is used to simulate flood hazard maps and to quantify future flood risk changes. Projected flood hazard (extent and depth) and damage maps were produced for the two municipalities under current and for future scenarios. The results indicate that the flood frequencies are expected to show a minor decrease in peak flows in the basin at the time horizons, 2050 and 2080. In addition, the depth and inundation areas will not significantly change for two time horizons, but instead show a minor decrease. Similarly, the projected flood damage changes in monetary losses are projected to decrease in the future. The results of this study allow one to identify present and future flood hazards and vulnerabilities, and should help decision-makers and the public to better understand the significance of climate change on flood risk in the Petite Nation River watershed.
-
Empirical evidence points out that urban form adaptation to climate-induced flooding events—through interventions in land uses and town plans (i. e., street networks, building footprints, and urban blocks)—might exacerbate vulnerabilities and exposures, engendering risk inequalities and climate injustice. We develop a multicriteria model that draws on distributive justice's interconnections with the risk drivers of social vulnerabilities, flood hazard exposures, and the adaptive capacity of urban form (through land uses and town plans). The model assesses “who” is unequally at-risk to flooding events, hence, should be prioritized in adaptation responses; “where” are the high-risk priority areas located; and “how” can urban form adaptive interventions advance climate justice in the priority areas. We test the model in Toronto, Ontario, Canada, where there are indications of increased rainfall events and disparities in social vulnerabilities. Our methodology started with surveying Toronto-based flooding experts who assigned weights to the risk drivers based on their importance. Using ArcGIS, we then mapped and overlayed the risk drivers' values in all the neighborhoods across the city based on the experts' assigned weights. Accordingly, we identified four high-risk tower communities with old infrastructure and vulnerable populations as the priority neighborhoods for adaptation interventions within the urban form. These four neighborhoods are typical of inner-city tower blocks built in the 20 th century across North America, Europe, and Asia based on modern architectural ideas. Considering the lifespan of these blocks, this study calls for future studies to investigate how these types of neighborhoods can be adapted to climate change to advance climate justice.
-
Data include sample replication (N) and flood-ring frequencies (F1, F2) derived from black ash (Fraxinus nigra Marsh.) trees growing in the floodplain of the Driftwood River in northwestern Ontario reported in "Flood ring production modulated by river regulation in eastern boreal Canada" published in "Frontiers in Plant Science - Quantitative Wood Anatomy to Explore Tree Responses to Global Change" by Nolin et al. in 2021c. DriftwoodFR.csv, as in Fig. 4, F1 and F2 flood-rings chronologies per sites and distance class with sample replication (N) to reproduce the flood-ring frequencies. Harricana River F1 and F2 flood ring chronologies from Nolin et al., 2021b are also provided. DriftwoodRW.csv, as in Fig. 5, the mean site chronologies of total ring width with sample replication (N). LAT_LON_Driftwood.kml, the coordinate data for each F. nigra stand sampled on the Driftwood River, including Monteith dam location, in Google Earth format (.kml) meatadatas.txt, a set of self-explanatory instructions and descriptions for data files. All other data are available upon request to the corresponding author at alexandreflorent.nolin@uqat.ca (institutional email), alexandreflorent.nolin@gmail.com (permanent email).
-
Abstract It is undeniable that coastal regions worldwide are facing unprecedented damages from catastrophic floods attributable to storm-tide (tidal) and extreme rainfall (pluvial). For flood-risk assessment, although recognizing compound impact of these drivers is a conventional practice, the marginal/individual impacts cannot be overlooked. In this letter, we propose a new measure, Tide-Rainfall Flood Quotient (TRFQ), to quantify the driver-specific flood potential of a coastal region arising from storm-tide or rainfall. A set of inundation and hazard maps are derived through a series of numerical and hydrodynamic flood model simulations comprising of design rainfall and design storm-tide. These experiments are demonstrated on three different geographically diverse flood-affected coastal regions in India. The new measure throws light on existing knowledge gaps on the propensity of coastal flooding induced by the marginal/individual contribution of storm-tide and rainfall. It shall prove useful in rationalizing long-term flood management strategies customizable for storm-tide and pluvial dominated global coastal regions.
-
Disastrous floods have caused millions of fatalities in the twentieth century, tens of billions of dollars of direct economic loss each year and serious disruption to global trade. In this Review, we provide a synthesis of the atmospheric, land surface and socio-economic processes that produce river floods with disastrous consequences. Disastrous floods have often been caused by processes fundamentally different from those of non-disastrous floods, such as unusual but recurring atmospheric circulation patterns or failures of flood defences, which lead to high levels of damage because they are unexpected both by citizens and by flood managers. Past trends in economic flood impacts show widespread increases, mostly driven by economic and population growth. However, the number of fatalities and people affected has decreased since the mid-1990s because of risk reduction measures, such as improved risk awareness and structural flood defences. Disastrous flooding is projected to increase in many regions, particularly in Asia and Africa, owing to climate and socio-economic changes, although substantial uncertainties remain. Assessing the risk of disastrous river floods requires a deeper understanding of their distinct causes. Transdisciplinary research is needed to understand the potential for surprise in flood risk systems better and to operationalize risk management concepts that account for limited knowledge and unexpected developments. River floods have direct and indirect consequences for society, and can cause fatalities, displacement and economic loss. This Review examines the physical and socioeconomic causes and impacts of disastrous river flooding, and past and projected trends in their occurrence.
-
Machine learning (ML) algorithms have emerged as competent tools for identifying areas that are susceptible to flooding. The primary variables considered in most of these works include terrain models, lithology, river networks and land use. While several recent studies include average annual rainfall and/or temperature, other meteorological information such as snow accumulation and short-term intense rain events that may influence the hydrology of the area under investigation have not been considered. Notably, in Canada, most inland flooding occurs during the freshet, due to the melting of an accumulated snowpack coupled with heavy rainfall. Therefore, in this study the impact of several climate variables along with various hydro-geomorphological (HG) variables were tested to determine the impact of their inclusion. Three tests were run: only HG variables, the addition of annual average temperature and precipitation (HG-PT), and the inclusion of six other meteorological datasets (HG-8M) on five study areas across Canada. In HG-PT, both precipitation and temperature were selected as important in every study area, while in HG-8M a minimum of three meteorological datasets were considered important in each study area. Notably, as the meteorological variables were added, many of the initial HG variables were dropped from the selection set. The accuracy, F1, true skill and Area Under the Curve (AUC) were marginally improved when the meteorological data was added to the a parallel random forest algorithm (parRF). When the model is applied to new data, the estimated accuracy of the prediction is higher in HG-8M, indicating that inclusion of relevant, local meteorological datasets improves the result.
-
Abstract In northern regions, river ice‐ jam flooding can be more severe than open‐water flooding causing property and infrastructure damages, loss of human life and adverse impacts on aquatic ecosystems. Very little has been performed to assess the risk induced by ice‐related floods because most risk assessments are limited to open‐water floods. The specific objective of this study is to incorporate ice‐jam numerical modelling tools (e.g. RIVICE, Monte‐Carlo simulation) into flood hazard and risk assessment along the Peace River at the Town of Peace River (TPR) in Alberta, Canada. Adequate historical data for different ice‐jam and open‐water flooding events were available for this study site and were useful in developing ice‐affected stage‐frequency curves. These curves were then applied to calibrate a numerical hydraulic model, which simulated different ice jams and flood scenarios along the Peace River at the TPR. A Monte‐Carlo analysis was then carried out to acquire an ensemble of water level profiles to determine the 1 : 100‐year and 1 : 200‐year annual exceedance probability flood stages for the TPR. These flood stages were then used to map flood hazard and vulnerability of the TPR. Finally, the flood risk for a 200‐year return period was calculated to be an average of $32/m 2 /a ($/m 2 /a corresponds to a unit of annual expected damages or risk). Copyright © 2016 John Wiley & Sons, Ltd.
-
Abstract Floods are among the most devastating natural hazards worldwide. While rainfall is the primary trigger of floods, human activities and climate change can exacerbate the impacts of floods and lead to more significant economic and social consequences. In this research, fluvial flood fatalities in the 1951–2020 period have been studied, analyzing the information reported in the Emergency Database (EM‐DAT). The EM‐DAT data were classified into five categories in terms of the number of events and fatalities connected with riverine floods, considering only events that caused more than 10 fatalities. The results show that the severity of flood‐related fatalities is not equally distributed worldwide, but presents specific geographical patterns. The flood fatality coefficient, which represents the ratio between the total number of fatalities and the number of flood events, calculated for different countries, identified that the Southern, Eastern, and South‐Eastern regions of Asia have the deadliest floods in the world. The number of flood events has been increasing since 1951 and peaked in 2007, following a relative decline since then. Though, the resulting fatalities do not follow a statistically significant trend. An analysis of the number of flood events in different decades shows that the 2001–2010 decade saw the highest number of events, which corresponds to the largest precipitation anomaly in the world. The lethality of riverine floods decreased over time, from 412 per flood in 1951–1960 to 67 in the 2011–2020 decade. This declining trend is probably a consequence of a more resilient environment and better risk reduction strategies. Based on the presented data and using regression analysis, relationships between flood fatalities and the number of flood events with population density and gross domestic product are developed and discussed.