Votre recherche
Résultats 397 ressources
-
The increase in the frequency of floods, which is a projected consequence of climate change, can have wide-ranging health and economic impacts. To cope with these floods and to reduce their impacts, households can adopt some preventive behaviours. The main goal of this research was to compare the adoption of flood mitigation behaviours in three populations presenting distinctive characteristics with a valid and an invariant measure of behavioural adaptation, as well as a baseline measure (comparison group). The article also aims to test the moderated effect of having experienced a flood on the relation between the perception of risk of being flooded and the adoption of preventive behaviours. A survey was conducted in flood-prone areas and in some areas that were not at risk in Quebec, Canada, through phone interviews. Results confirmed that people who lived in an at-risk area and had experienced past flooding events are more inclined to adopt preventive behaviours than people who lived in an at-risk area but had never experienced such an event, and those who lived outside at-risk areas. In addition, our results indicate that the at-risk population who have never experienced a flood engage in few flood preventive behaviours. This is worrisome, as their rate of adopting adaptive behaviour is very similar to the one seen in populations living outside at-risk areas, despite the increased risk inherent to their situation. This could be partly explained by our data showing that around a quarter of the at-risk population did not know they were living in a flood-prone area. Our results show that communication efforts are necessary in order to better inform the population of the risk related to living in a flood-prone area and that incentives should be developed to help enhance the rate of preventive behaviours in at-risk populations having never experienced a flood.
-
Abstract By using risk-adjusted price signals to transfer responsibility for property-level flood protection and recovery from governments to property owners, flood insurance represents a key tenet of the flood risk management (FRM) paradigm. The Government of Canada has worked with insurers to introduce flood insurance for the first time as a part of a broader shift towards FRM to limit the growing costs of flooding. The viability of flood insurance in Canada, however, has been questioned by research that disputes the utility of purchasing coverage by property owners. This study tested this assumption by drawing on public opinion survey data to assess factors that influence decisions about the utility of insurance. The findings reveal that Canadians have limited knowledge of flood insurance coverage, exhibit a low willingness-to-pay for both insurance and property-level flood protection measures, and expect governments to shoulder much of the financial burden of flood recovery through disaster assistance.
-
Intensity Duration Frequency (IDF) curves are among the most common tools used in water resources management. They are derived from historical rainfall records under the assumption of stationarity. Change of climatic conditions makes the use of historical data for development of IDFs for the future unjustifiable. The IDF_CC, a web based tool, is designed, developed and implemented to allow local water professionals to quickly develop estimates related to the impact of climate change on IDF curves for almost any local rain monitoring station in Canada. The primary objective of the presented work was to standardize the IDF update process and make the results of current research on climate change impacts on IDF curves accessible to everyone. The tool is developed in the form of a decision support system (DSS) and represents an important step in increasing the capacity of Canadian water professionals to respond to the impacts of climate change. Climate change impact on IDF curves investigated.Standardized IDF update process.Two theoretical contributions incorporated: downscaling method and skill score computation method.Web based tool developed and implemented for updating IDF curves under climate change.
-
In agricultural watersheds, human interventions such as channel straightening have disrupted the hydrologic connectivity between headwater streams and their riparian environment and have thus undermined the ecological services provided by these small streams. Knowledge of the hydrologic connectivity between these streams and their immediate environment (shallow riparian groundwater in the historical floodplain and on adjacent hillslopes) in human-impacted settings is critical for understanding and restoring these hydrological systems but remains largely incomplete. The objective of this research is to investigate the hydrogeomorphological conditions controlling hydrologic connectivity in the historical floodplain of straightened lowland streams. Detailed measurements on the spatiotemporal variability of groundwater-surface water interactions between straightened reaches, historical floodplain including abandoned meanders, and the adjacent hillslopes were obtained using a dense network of piezometers at two sites in the St. Lawrence Lowlands (Quebec, Canada). Results show that the complex mechanisms controlling hydrologic connectivity in naturally meandering lowland rivers also operate in highly disturbed straightened reaches, despite backfilling and agricultural practices. The pre-straightening hydrogeomorphological configuration of the floodplain partly explains the complex patterns of piezometric fluctuations observed at the sites. The apex of the abandoned meanders stands out as a focal area of hydrologic connectivity as water levels indicate pressure transfer that may reflect flows from the stream, the hillslopes, and the surrounding historical floodplain. These unique field observations suggest that abandoned meanders should be promoted as key elements of restoration strategies in lowland agricultural straightened headwater streams.
-
Abstract During spring 2011, an extreme flood occurred along the Richelieu River located in southern Quebec, Canada. The Richelieu River is the last section of the complex Richelieu basin, which is composed of the large Lake Champlain located in a valley between two large mountains. Previous attempts in reproducing the Richelieu River flow relied on the use of simplified lumped models and showed mixed results. In order to prepare a tool to assess accurately the change of flood recurrences in the future, a state‐of‐the‐art distributed hydrological model was applied over the Richelieu basin. The model setup comprises several novel methods and data sets such as a very high resolution river network, a modern calibration technique considering the net basin supply of Lake Champlain, a new optimization algorithm, and the use of an up‐to‐date meteorological data set to force the model. The results show that the hydrological model is able to satisfactorily reproduce the multiyear mean annual hydrograph and the 2011 flow time series when compared with the observed river flow and an estimation of the Lake Champlain net basin supply. Many factors, such as the quality of the meteorological forcing data, that are affected by the low density of the station network, the steep terrain, and the lake storage effect challenged the simulation of the river flow. Overall, the satisfactory validation of the hydrological model allows to move to the next step, which consists in assessing the impacts of climate change on the recurrence of Richelieu River floods. , Plain Language Summary In order to study the 2011 Richelieu flood and prepare a tool capable of estimating the effects of climate change on the recurrence of floods, a hydrological model is applied over the Richelieu basin. The application of a distributed hydrological model is useful to simulate the flow of all the tributaries of the Richelieu basin. This new model setup stands out from past models due to its distribution in several hydrological units, its high‐resolution river network, the calibration technique, and the high‐resolution weather forcing data set used to drive the model. The model successfully reproduced the 2011 Richelieu River flood and the annual hydrograph. The simulation of the Richelieu flow was challenging due to the contrasted elevation of the Richelieu basin and the presence of the large Lake Champlain that acts as a reservoir and attenuates short‐term fluctuations. Overall, the application was deemed satisfactory, and the tool is ready to assess the impacts of climate change on the recurrence of Richelieu River floods. , Key Points An advanced high‐resolution distributed hydrological model is applied over a U.S.‐Canada transboundary basin The simulated net basin supply of Lake Champlain and the Richelieu River discharge are in good agreement with observations of the 2011 flood The flow simulation is challenging due to the topographic and meteorological complexities of the basin and uncertainties in the observations
-
In recent years, geospatial data (e.g. remote sensing imagery), and other relevant ancillary datasets (e.g. land use land cover, climate conditions) have been utilized through sophisticated algorithms to produce global population datasets. With a handful of such datasets, their performances and skill in flood exposure assessment have not been explored. This study proposes a comprehensive framework to understand the dynamics and differences in population flood exposure over Canada by employing four global population datasets alongside the census data from Statistics Canada as the reference. The flood exposure is quantified based on a set of floodplain maps (for 2015, 1 in 100-yr and 1 in 200-yr event) for Canada derived from the CaMa-Flood global flood model. To obtain further insights at the regional level, the methodology is implemented over six flood-prone River Basins in Canada. We find that about 9% (3.31 million) and 11% (3.90 million) of the Canadian population resides within 1 in 100-yr and 1 in 200-yr floodplains. We notice an excellent performance of WorldPop, and LandScan in most of the cases, which is unaffected by the representation of flood hazard, while Global Human Settlement and Gridded Population of the World showed large deviations. At last, we determined the long-term dynamics of population flood exposure and vulnerability from 2006 to 2019. Through this analysis, we also identify the regions that contain a significantly larger population exposed to floods. The relevant conclusions derived from the study highlight the need for careful selection of population datasets for preventing further amplification of uncertainties in flood risk. We recommend a detailed assessment of the severely exposed regions by including precise ground-level information. The results derived from this study may be useful not only for flood risk management but also contribute to understanding other disaster impacts on human-environment interrelationships. • Five population datasets are considered for quantifying flood exposure over Canada. • WorldPop and LandScan provide the closest estimates when compared with census data. • Skill of population datasets is tested over six flood-prone River Basins of Canada. • Long-term changes in degree of exposure is characterized at census-division level. • Highly exposed divisions are identified for ensuring detailed flood-risk assessment
-
Les bassins versants du Moyen‐Nord quebecois (49e au 55e parallele) se distinguent par leur climatologie et le pourcentage eleve de territoires couverts par des lacs et milieux humides (de l’ordre de 20 a 30 %) et, surtout, par leur importante contribution a la production electrique du Quebec; le complexe de la riviere La Grande generant environ 40% de l’electricite quebecoise. Dans le contexte de la gestion de la production d’electricite, Hydro‐Quebec Production fait la prevision des apports aux reservoirs de ce complexe a l’aide d’un modele hydrologique global. Par ailleurs, depuis les annees 1980, le milieu boreal quebecois a subi des hausses de temperature et de precipitation qui ont modifie le regime des apports aux reservoirs. Compte tenu de ces changements et des caracteristiques physiographiques des bassins boreaux, il a ete propose d’utiliser un modele hydrologique distribue a base physique pour examiner l’impact sur ces apports des projections climatiques produites par Ouranos. En l’occurrence le modele HYDROTEL dont la prise en mains est en train d’etre completee par Hydro‐Quebec Production. Le modele qui est maintenant convenablement cale pour un certain nombre de bassins repond aux attentes dans les bassins du sud du Quebec. Toutefois, pour les grands bassins du Nord comme ceux du Complexe La Grande, l’utilisation du modele requiert des travaux d’adaptations, entre autres, aux niveaux de la modelisation des milieux humides et de la desagregation spatiale des precipitations simulees par les modeles climatiques. Les objectifs generaux de ce projet etaient d’accroitre notre comprehension de l’hydrologie du moyen nord afin qu’elle soit bien representee dans HYDROTEL tout en tenant compte des incertitudes parametriques associees aux differentes equations gouvernant les processus physiques. Ces objectives ont ete declines en trois activites de travail : (AT1) modelisation des processus hydrologiques; (AT2) calage et analyses de sensibilite, d’identifiabilite et d’incertitudes des parametres de calage d’HYDROTEL; et (AT3) amelioration des plateformes informatiques HYDROTEL et PHYSITEL, ce dernier etant un SIG dedie a la construction des bases de donnees de modeles hydrologiques distribues. Pour Ouranos et Hydro‐Quebec les principales realisations issues de ce projet incluent : (i) le developpement d’une methode eprouvee de desagregation sous grille de la precipitation mesoechelle permettant d’evaluer a fine echelle spatiale l’impact des changements climatiques sur les precipitations; (ii) une meilleure comprehension de la dynamique des ecoulements, du stockage de l’eau et de l’evapotranspiration d’un petit bassin versant boreal incluant une grande une tourbiere minerotrophe aqualysee; (iii) l’evaluation du parametrage de la sublimation et la relocalisation de la neige dues au vent et l’identification du besoin d’inclure le rayonnement sous la canopee pour bien reproduire la crue avec un modele complexe de l'evolution du couvert nival; (iv) la detection de la quasi neutralite frequente (~76% du temps, majoritairement le jour) de l’atmosphere au‐dessus d’un milieu humide causee par une turbulence mecanique forte et une grande inertie thermique; conditions ayant permises le developpement d’un modele simple d’evapotranspiration des milieux humides base le transfert massique et la stabilite atmospherique; (v) le developpement d’un modele de rayonnement net base uniquement sur des donnees de temperatures journalieres (min, max) et une estimation des parametres permettant de valider l’utilisation de l’equation de Penman‐Monteith dans le nord quebecois; (vi) la hierarchisation des parametres de calage d’HYDROTEL selon la saison et le developpement d’une methode permettant d’evaluer l’incertitude sur les debits simules et d’identifier son importance durant la fonte et l’etiage estival; (vii) dans un contexte d’analyse frequentielle des debits simules, evaluation de l’incertitude parametrique par rapport a l’incertitude statistique, cette derniere dominant pour les periodes de retour superieures a cinq ans; (viii) a l’aide de PHYSITEL, la premiere discretisation du complexe de la riviere La Grande (136 648 km2) en six sousbassins (LG1, LG2, LG3, LG4, La Forge 1 & 2,et Caniapiscau) leur subdivision en versants permettant le calcul de crues maximales probables a l’aide d’HYDROTEL; et (ix) le developpement d’une version 64 bits d’HYDROTEL incluant de nouveaux modules de de calculs de la temperature du sol et des bilans hydriques des milieux humides et isoles. L'avancement de nos comprehensions de l'hydrologie des milieux humides et du milieu boreal en general a ete a la base du developpement des versions adaptees d'HYDROTEL et de PHYSITEL qui permettront a Hydro‐Quebec d'apprehender, avec une modelisation distribuee, l'impact des changements climatiques sur le complexe de la riviere La Grande. Ces logiciels sont transposables a l’ensemble du milieu boreal canadien. Une entente conclut, depuis 2005, entre l’INRS et Hydro‐Quebec (HQ) permet d’ailleurs une distribution commerciale des differentes versions d’HYDROTEL avec interfaces usagers de meme qu’une distribution communautaire du noyau de calcul. Cette synergie a permis de mettre en commun des ressources et des expertises qui facilitent les echanges scientifiques et techniques entre les concepteurs d’HYDROTEL, le Centre d’expertise hydrique du Quebec (CEHQ), HQ, l’IREQ (Institut de recherche en electricite du Quebec) et d’autres usagers (ex. : l’IMTA, Instituto Mexicano de Technologia del Agua). Au total, plus d’une quarantaine de licences ont ete distribuees tant pour des besoins d’enseignement (Universite de Sherbrooke) et de recherche (Universite Laval, UQTR, UQAC, IREQ, Ecole de Technologie Superieure, INRA de Montpellier, Environnement Canada, Agriculture et Agroalimentaire Canada), que des besoins de prevision hydrologique (IMTA, Ville de Quebec, Centre d’expertise hydrique du Quebec, HQ). La modularite informatique d’HYDROTEL se prete egalement bien a cette synergie car elle offre la possibilite de partager le savoir‐faire et, par l’entremise d’un site internet public (CodePlex), de mettre a la disponibilite de tous les nouvelles versions du noyau de calcul. Ces developpements ont permis a l’equipe de l’INRS‐ETE d’acquerir une reconnaissance internationale en modelisation hydrologique distribuee. En effet, HYDROTEL et PHYSITEL ont dans le passe ete identifie comme les outils a utiliser dans le cadre d’appels de proposition de projets de determination du potentiel hydroelectrique finances par la Banque Mondiale [World Bank, 2009].
-
Abstract. One of the key priorities for disaster risk reduction is to ensure decision makers, stakeholders, and the public understand their exposure to disaster risk, so that they can take protective action. Flood maps are a potentially valuable tool for facilitating this understanding of flood risk, but previous research has found that they vary considerably in availability and quality. Using an evaluation framework comprising nine criteria grounded in existing scholarship, this study assessed the quality of flood maps available to the public in Canadian communities located in designated flood risk areas. It found that flood maps in most municipalities (62 %) are low quality (meeting less than 50 % of the criteria) and the highest score was 78 % (seven of nine criteria met). The findings suggest that a more concerted effort to produce high-quality, publicly accessible flood maps is required to support Canada's international commitment to disaster risk reduction. Further questions surround possible weighting of quality assessment criteria, whether and how individuals seek out flood maps, and how flood risk information could be better communicated using modern technology.
-
Snow avalanches are a major natural hazard for road users and infrastructure in northern Gaspesie. Over the past 11 years, the occurrence of nearly 500 snow avalanches on the two major roads servicing the area was reported. No management program is currently operational. In this study, we analyze the weather patterns promoting snow avalanche initiation and use logistic regression (LR) to calculate the probability of avalanche occurrence on a daily basis. We then test the best LR models over the 2012–2013 season in an operational forecasting perspective: Each day, the probability of occurrence (0–100%) determined by the model was classified into five classes avalanche danger scale. Our results show that avalanche occurrence along the coast is best predicted by 2 days of accrued snowfall [in water equivalent (WE)], daily rainfall, and wind speed. In the valley, the most significant predictive variables are 3 days of accrued snowfall (WE), daily rainfall, and the preceding 2 days of thermal amplitude. The large scree slopes located along the coast and exposed to strong winds tend to be more reactive to direct snow accumulation than the inner-valley slopes. Therefore, the probability of avalanche occurrence increases rapidly during a snowfall. The slopes located in the valley are less responsive to snow loading. The LR models developed prove to be an efficient tool to forecast days with high levels of snow avalanche activity. Finally, we discuss how road maintenance managers can use this forecasting tool to improve decision making and risk rendering on a daily basis.
-
Abstract Ephemeral ponds (EPs) are seasonally flooded isolated wetlands that provide a variety of hydroecological benefits, including the provision of breeding habitat for several amphibian and invertebrate species. However, the lack of their explicit representation in hydrological models limits a comprehensive understanding of their interaction with surrounding landscapes and their vulnerability in the context of human interventions and climate change. The purpose of this research was to improve the isolated wetland module of the Soil Water Assessment Tool (SWAT) to better represent EP hydrology. The changes include (1) representation of groundwater and hypodermic flow as the only inflows from the pond drainage surface, due to the intermittent and negligible presence of inflow from surface runoff in forested ponds, (2) revision of how evapotranspiration within EPs is represented and (3) implementation of distinct volume‐area‐depth relationships for ponds based on their geometrical shape. The accuracy of these improvements was assessed against that of a previous isolated wetland formulation in replicating water depth observations of 10 EPs of a portion of the Kenauk forest (68 km 2 ) in the Canadian Shield of the Outaouais region (Québec, Canada). The comparison results show that the revised SWAT model presented here significantly improves the distinct filling and drying water cycle of EPs (average root mean square error of 0.1 m of the revised model vs. 0.23 m for the original model). Besides, the new module allowed to identify that hypodermic flow, evapotranspiration and seepage to the underlying soil are the main EP source and sinks. The new module also allowed to explicitly quantify the differences in filling/drying pattern of the EPs of the Kenauk forest and unlike the original model structure, the new module was able to closely replicate the interannual variation of spring and annual hydroperiod duration.
-
Despite being recognized as a key component of shallow-water ecosystems, submerged aquatic vegetation (SAV) remains difficult to monitor over large spatial scales. Because of SAV’s structuring capabilities, high-resolution monitoring of submerged landscapes could generate highly valuable ecological data. Until now, high-resolution remote sensing of SAV has been largely limited to applications within costly image analysis software. In this paper, we propose an example of an adaptable open-sourced object-based image analysis (OBIA) workflow to generate SAV cover maps in complex aquatic environments. Using the R software, QGIS and Orfeo Toolbox, we apply radiometric calibration, atmospheric correction, a de-striping correction, and a hierarchical iterative OBIA random forest classification to generate SAV cover maps based on raw DigitalGlobe multispectral imagery. The workflow is applied to images taken over two spatially complex fluvial lakes in Quebec, Canada, using Quickbird-02 and Worldview-03 satellites. Classification performance based on training sets reveals conservative SAV cover estimates with less than 10% error across all classes except for lower SAV growth forms in the most turbid waters. In light of these results, we conclude that it is possible to monitor SAV distribution using high-resolution remote sensing within an open-sourced environment with a flexible and functional workflow.
-
The potential impacts of floods are of significant concern to our modern society raising the need to identify and quantify all the uncertainties that can impact their simulations. Climate simulations at finer spatial resolutions are expected to bring more confidence in these hydrological simulations. However, the impact of the increasing spatial resolutions of climate simulations on floods simulations has to be evaluated. To address this issue, this paper assesses the sensitivity of summer–fall flood simulations to the Canadian Regional Climate Model (CRCM) grid resolution. Three climate simulations issued from the fifth version of the CRCM (CRCM5) driven by the ERA-Interim reanalysis at 0.44°, 0.22° and 0.11° resolutions are analysed at a daily time step for the 1981–2010 period. Raw CRCM5 precipitation and temperature outputs are used as inputs in the simple lumped conceptual hydrological model MOHYSE to simulate streamflows over 50 Quebec (Canada) basins. Summer–fall flooding is analysed by estimating four flood indicators: the 2-year, 5-year, 10-year and 20-year return periods from the CRCM5-driven streamflows. The results show systematic impacts of spatial resolution on CRCM5 outputs and seasonal flood simulations. Floods simulated with coarser climate datasets present smaller peak discharges than those simulated with the finer climate outputs. Smaller catchments show larger sensitivity to spatial resolution as more detail can be obtained from the finer grids. Overall, this work contributes to understanding the sensitivity of streamflow modelling to the climate model’s resolution, highlighting yet another uncertainty source to consider in hydrological climate change impact studies.
-
Soil moisture is a key variable in Earth systems, controlling the exchange of water and energy between land and atmosphere. Thus, understanding its spatiotemporal distribution and variability is important. Environment and Climate Change Canada (ECCC) has developed a new land surface parameterization, named the Soil, Vegetation, and Snow (SVS) scheme. The SVS land surface scheme features sophisticated parameterizations of hydrological processes, including water transport through the soil. It has been shown to provide more accurate simulations of the temporal and spatial distribution of soil moisture compared to the current operational land surface scheme. Simulation of high resolution soil moisture at the field scale remains a challenge. In this study, we simulate soil moisture maps at a spatial resolution of 100 m using the SVS land surface scheme over an experimental site located in Manitoba, Canada. Hourly high resolution soil moisture maps were produced between May and November 2015. Simulated soil moisture values were compared with estimated soil moisture values using a hybrid retrieval algorithm developed at Agriculture and Agri-Food Canada (AAFC) for soil moisture estimation using RADARSAT-2 Synthetic Aperture Radar (SAR) imagery. Statistical analysis of the results showed an overall promising performance of the SVS land surface scheme in simulating soil moisture values at high resolution scale. Investigation of the SVS output was conducted both independently of the soil texture, and as a function of the soil texture. The SVS model tends to perform slightly better over coarser textured soils (sandy loam, fine sand) than finer textured soils (clays). Correlation values of the simulated SVS soil moisture and the retrieved SAR soil moisture lie between 0.753–0.860 over sand and 0.676-0.865 over clay, with goodness of fit values between 0.567–0.739 and 0.457–0.748, respectively. The Root Mean Square Difference (RMSD) values range between 0.058–0.062 over sand and 0.055–0.113 over clay, with a maximum absolute bias of 0.049 and 0.094 over sand and clay, respectively. The unbiased RMSD values lie between 0.038–0.057 over sand and 0.039–0.064 over clay. Furthermore, results show an Index of Agreement (IA) between the simulated and the derived soil moisture always higher than 0.90.
-
Abstract The analysis across spatial, temporal and governance scales shows an inequitable distribution of risk across Canada’s Metro Vancouver region. For First Nation communities in this region, this risk is rooted in the colonial history of land dispossession. This article makes a contribution by expanding our understanding of historic creation of riskscapes and a discussion of its implications as a multiscale governance issue that persists across space and time. This article also situates the impacts of projected sea level rise on Indigenous communities in the context of regional, provincial and federal settler-colonial flood risk management regime.
-
Canada’s vast regions are reacting to climate change in uncertain ways. Understanding of local disaster risks and knowledge of underlying causes for negative impacts of disasters are critical factors to working toward a resilient environment across the social, economic, and the built sectors. Historically, floods have caused more economical and social damage around the world than other types of natural hazards. Since the 1900s, the most frequent hazards in Canada have been floods, wildfire, drought, and extreme cold, in terms of economic damage. The recent flood events in the Canadian provinces of Ontario, New Brunswick, Quebec, Alberta, and Manitoba have raised compelling concerns. These include should communities be educated with useful knowledge on hazard risk and resilience so they would be interested in the discussion on the vital role they can play in building resilience in their communities. Increasing awareness that perceived risk can be very different from the real threat is the motivation behind this study. The main objectives of this study include identifying and quantifying the gap between people’s perception of exposure and susceptibility to the risk and a lack of coping capacity and objective assessment of risk and resilience, as well as estimating an integrated measure of disaster resilience in a community. The proposed method has been applied to floods as an example, using actual data on the geomorphology of the study area, including terrain and low lying regions. It is hoped that the study will encourage a broader debate if a unified strategy for disaster resilience would be feasible and beneficial in Canada.