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ABSTRACT
A strong correlation between the effect of climate change and the increase in flooding 
frequency and magnitude has been reported in Canada. Consequently, there is a crucial 
need to examine the effects of future climate change scenarios on flooding conditions. The 
main objective of this research is to better understand the destructive effects of flood events 
under historical and future climate change conditions for a small watershed (Eel River 
watershed) in New Brunswick (NB), Eastern Canada. A practical model had been developed 
using the modified Artificial Neural Network (ANN) in MATLAB by the authors of this study. The 
architecture and data structure of ANN is characterized by a back propagation with the 
Levenberg–Marquardt method. The observed daily total precipitation, daily maximum and 
minimum air temperatures, daily discharge for the period 1967 to 1983, the simulated monthly 
maximum and minimum air temperatures, and monthly total precipitation for the period of 
1996–2099 from the CanESM2, the second-generation Canadian Earth System Model (CGCM), 
were used as input of the model. The Representative Concentration Pathways (RCP 4.5 and 8.5), 
as suitable climate change scenarios, were selected based on the Intergovernmental Panel on 
Climate Change (IPCC) recommendations for flood studies. Daily values of temperatures, 
precipitations, and discharges were converted to monthly mean values for better prediction 
of the output results. In addition, two series of observed discharges were prepared using mean 
monthly (Qavg) and daily maximum discharges (Qd) as the Target of the model. For more 
accurate analysis, the time frames of 1996–2012 (for the historical) and 2022–2038, 2039–2055, 
2056–2072, 2073–2089, and 2083–2099 (for the future) were considered with a duration of 16  
years for each time frame. The output results of ANN were predicted daily maximum (Qd) and 
mean (Qavg) discharges under the impact of climate change scenarios. As a part of the 
developed model, Flood Frequency Analysis (FFA) was undertaken using the generalized 
extreme value (GEV) and the three-parameter lognormal (LN3) distributions based on the 
predicted and observed discharges. The performance of FFA and ANN were demonstrated 
using the Anderson–Darling (AD), the Chi-square (CS) tests and coefficient of correlation (R) 
and mean squared error (MSE), respectively. In conclusion, the three most critical time frames 
with the highest values of predicted discharges were 2022–2038, 2056–2072, and 2073–2089 
for RCP4.5 and 2039–2055, 2073–2089, and 2083–2099 for RCP8.5. Also, based on the FFA, the 
magnitudes of flood recurrence for the future time period of 100  years will dramatically 
increase according to the most critical time frames of 2056–2072 and 2039–2055 for RCP 4.5 
and 8.5, respectively. Findings indicated that the Eel River watershed will encounter severe 
floods, and about a 50% increase in mean discharge, especially for the critical time frames. 
Finally, flood occurrences show increasing trends due to climate change effects in the most 
critical time frames.
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Introduction

Floods in the context of global change can cause some 
major problems in relation to environmental distur-
bances such as urbanization, agriculture, deforesta-
tion, and so on (Alifu, Hirabayashi, Imada, & 
Shiogama, 2022; Arnell & Gosling, 2016; Kundzewicz 
et al., 2013). Flooding has always been a pervasive 
natural hazard in Canada due to many rivers, lakes, 
bodies of water, climatic conditions, and the presence 

of communities in floodplains (Burn & Whitfield,  
2016; Public Safety of Canada, 2013). In addition, 
major disastrous floods that occurred in some 
Canadian provinces such as British Columbia, 
Newfoundland, and Nova Scotia in 2021 show the 
importance of this phenomenon. Indeed, according 
to the Canadian Disaster Database of the Public 
Safety Canada, more than 300 flood disasters have 
been recorded for the period 1902 to 2014, showing, 
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on the one hand, the recurrence of the meteorological 
and hydrological triggering conditions and, on the 
other hand, the exposure and vulnerability of the 
population. In eastern Canada, the configuration of 
the river system and the climatic conditions – cold 
winter with significant snow cover – create favorable 
conditions for flooding related to snowmelt, in addi-
tion to the ice-jam formation (Gerard & Davar, 1995; 
Rokaya, Budhathoki, & Lindenschmidt, 2018). 
Disaster statistics emerged to show flood occurrences 
are becoming more common in the context of NB, 
with medium-scale events increasing fastest due to 
severe changes in weather patterns and climate. For 
example, the springs of 2017 to 2019 were especially 
disastrous and costly because of the seriousness of the 
floods (Brogan, McDonald, Lyons, Johnston, & 
Stewart-Robertson, 2020; Henry, Laroche, Hentati, & 
Boisvert, 2020; Lin, Mo, Vitart, & Stan, 2019). There 
are different reasons for the occurrence of floods in 
NB. In this province, inland flooding can occur with 
rapid snowmelt and heavy rainfall (Burrell et al., 2015) 
in addition to the water buildup behind an ice jam. In 
NB, due to some warm periods in wintertime, favor-
able to moderate ice-jam problems, flooding has dan-
gerous effects due to the rapid melt of snow (Baronetti, 
Fratianni, Acquaotta, & Fortin, 2019). In other 
months of the year, abundant rainfall during primary 
storms can cause flooding, especially in smaller rivers. 
Moreover, coastal flooding can be triggered by storm 
surges or high tides (Lindenschmidt, Huokunab, 
Burrellc, & Beltaosd, 2018; Mallet, Fortin, & 
Germain, 2018). Furthermore, the land near an area 
of delta or brackish water can be at a certain risk of 
flooding due to high water levels caused by high mar-
ine tides, storm surges and river flows that can act 
separately or in combination (Buttle & Spence, 2016).

Climate change can induce local variability in the 
amount, duration, frequency, and distribution of pre-
cipitations which causes a change in flooding regimes 
(Gaur, Gaur, & Simonovic, 2018; Mladjic et al., 2011). 
In the summertime, warming of the Atlantic Ocean 
related to global warming impacts the Atlantic pro-
vinces such as NB by producing more hurricanes or 
stronger ones. Hurricanes eventually diminish in 
intensity as they make landfall and become post- 
tropical storms that bring intense rainfall and dama-
ging winds causing major flooding to the southern 
part of the province of NB. Also, due to the complex 
system of storm-flooding, prediction and tracking of 
these events might become more difficult (Collins 
et al., 2014). Climate change could also alter the 
hydrologic cycle and its components (physical para-
meters) so this study will be helpful to improve the 
knowledge of how flood patterns could be affected by 
climate change in NB for the future time frame. 

Coastal flooding is expected to increase in many 
parts of the province (e.g. the Eel River watershed) 
because of rising sea levels. Environmental changes 
need to be integrated not only at local sea levels but 
also into the global sea-level rise and local land uplift 
or subsidence. Local sea level is predicted to rise and 
increase flooding, in most parts of the Atlantic, and 
Pacific coasts of Canada and the Beaufort coast in the 
Arctic, where the land is subsiding or slowly uplifting. 
The loss of sea ice in Atlantic Canada and the Arctic 
further increases the risk of damage to coastal infra-
structures and ecosystems due to the larger storm 
surges and waves (Bush & Lemmen, 2019; McGrath, 
Stefanakis, & Nastev, 2015) and the absence of an ice 
foot on the coast. This issue must be considered for 
analyzing floods in NB because most of the large rivers 
(e.g. the Eel River) that end their course in the Atlantic 
Ocean or the Gulf of St. Lawrence are tidally 
influenced.

It is crucial to consider flooding problems including 
frequency and magnitude in NB with selecting an 
important watershed (in terms of water supply, biodi-
versity, agriculture, recreation, and sustainable devel-
opment) such as the Eel River watershed that has the 
various mentioned involved parameters of flood occur-
rences within NB in connection to the newer version of 
the Canadian climate change model (4th generation) 
and atmospheric conditions to fill the gaps in previous 
studies. Previous studies mainly focused on the older 
version of the climate change model, the 3rd generation 
or the Coupled Global Climate Model (CGCM3), with 
a limited selection of scenarios to investigate flood 
issues (El-Jabi, Caissie, & Turkkan, 2016; El-Jabi, 
Turkkan, & Caissie, 2013). The aim of this research is 
to understand the effects of climate change on the Eel 
River watershed, one typical small watershed with all 
the critical parameters that are important for flood 
studies in the province, using the modified ANN 
which linked the Flood Frequency Analysis (FFA) for 
the historical data and the future climate projection of 
the 4th generation of CGCM3 which is equal to 
the second generation Canadian Earth System Model 
(CanEsm2) using two Representative Concentration 
Pathways scenarios (RCP 8.5 and 4.5) for the future 
time frame 2022–2099.

Selected study area characteristics

The Eel River watershed was selected as a study area 
due to the vulnerability of this important watershed 
toward various flood occurrences in NB based on 
Figure 1. The Eel River watershed is located in the 
range of Appalachian Mountain and is part of the Gulf 
of St. Lawrence drainage basin. The Eel River 
watershed is approximately 220 km2 and 24 km long. 
The drainage area of the Eel River station near Eel 
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River Crossing is equal to 88.6 km2. Furthermore, the 
percentage of lakes and swamps in this watershed is 
68%. The Eel River itself is a main watercourse in the 
watershed with a length of around 135 km from its 
headwaters to its confluence with the Restigouche 
River and empties into the “Chaleur” Bay. The 
watershed can be considered rural, with a population 
of about 1953 (Statistic Canada, 2017), mainly con-
centrated in the Eel River crossing area near the mouth 
of the river. The Eel River crossing village has an area 
of 22.79 km2 and is built on a plain bordered by the 
Appalachians except to the east, where the “Chaleur” 
Bay extends. Mount Dalhousie to the north, 

160 m high, is the highest point closest to the village. 
In addition, the Eel River crossing area is considered 
a Designated Watershed Protected Area (DWPR) by 
the Government of New Brunswick as a portion of the 
local population obtains their drinking water from this 
section of the river. Maritime Climate, with character-
istics of high precipitation level and humidity, affects 
the Eel River watershed which brings mild summers 
and relatively mild winters. According to Koppen’s 
climate classification (Köppen & Geiger, 1930), the 
whole province of NB is defined as a humid continen-
tal climate (Dfb). However, according to Fortin and 
Dubreuil (2020), who produced a map of the different 

Figure 1. Case study area.
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types of climates at the province scale, the study area is 
of East Coast type. For this climate type, the average 
temperature of the coldest month (January) is 0 °C, 
while the average temperature of the hottest month 
(July) is 10.1 °C, based on the reference period of 1981 
to 2010. This climate type’s average annual precipita-
tion is 1114 mm. The study area receives nearly 30% of 
its yearly precipitation as snow, and snow accumula-
tion on the ground peaks at about 60.5 cm in February 
(Baronetti, Fratianni, Acquaotta, & Fortin, 2019). 
Generally, during the melt period in March and 
April, the risk of flooding is most significant in the 
province.

The geology of the Eel River watershed which is 
formed in the southwestern Miramichi terrane of NB 
includes a calc-alkaline suite of volcanic rocks that are 
interlayered with intervals of polylith fragmental rocks in 
addition to the sedimentary rocks and are overlain by 
a thick sedimentary sequence (McClenaghan, Lentz, & 
Fyffe, 2006).

The Eel River watershed land use is divided into 89% 
forest, 6% cropland, and 5% urban development. Most of 
the territory has forests, old farmland, and wetlands and 
the altitude in the Eel River crossing village does not 
exceed 20 m. It is unlikely that this insignificant land 
use and land cover has a major impact on the hydro-
logical response of the watershed (Laplante & Simard,  
2013; Statistic Canada, 2023). Figure 2 shows the most 
recent land use map of the Eel River watershed.

Materials and methods

Data preparation

Total precipitation and daily maximum and minimum 
air temperatures for the recorded period 1967 to 1983 

as the observed data from Charlo A station in Eel 
River Watershed were obtained from Environment 
Canada’s National Climate Data Archive, daily 
observed discharge (Qobs, m3/s) data from 
01BJ004 hydrological station was obtained as an 
observed data from Environment Canada’s 
National Water Data Archive. Simulated monthly 
maximum and minimum air temperatures and 
total precipitation for the whole period of 1996– 
2099, in which 1996 to 2021 was defined as his-
torical data and 2022 to 2099 defined as future 
data, were obtained from Canadian Centre for 
Climate Modelling and Analysis (CCCma) for 
simulated CanESM2/RCP4.5 and 8.5 scenarios cli-
mate change model. The main reason for choosing 
RCP4.5 and 8.5 is that based on the IPCC report, 
RCP4.5 and 8.5 are described as intermediate and 
high emission scenarios that are appropriate for 
evaluating the future effects of climate change on 
flood events. In RCP4.5, the emission peak will 
occur around 2040, then they will decline. 
Moreover, RCP 4.5 needs carbon dioxide (CO2) 
emissions to start decreasing by 2045 to reach 
approximately half of the levels of 2050 by 2100. 
RCP4.5 is more likely than not to result in a global 
temperature rise between 2 °C, and 3 °C, by 2100 
with a mean sea level rise 35% higher than that of 
RCP 2.6. Many animal and plant species will be 
unable to adjust to the effects of RCP4.5 and higher 
RCPs in the near future (Thomson et al., 2011). 
RCP8.5 is regarded as the highest baseline emis-
sions among RCPs and by the year 2100, this 
scenario predicts a 4.5 to 6 °C temperature increase 
(Riahi et al., 2011).

Figure 2. The most recent land use map of the Eel River watershed.
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The developed database for analysis was checked 
in terms of data quality to find out if there is any 
missing data within a time series or not. There is 
no missing data reported within an entire database. 
It is important to note that daily values of tem-
peratures, and precipitation, are converted to 
monthly mean values. In addition, two series of 
observed discharges were prepared using mean 
monthly (Qavg) and daily maximum discharges 
(Qd) to obtain better results. The daily maximum 
discharge is the highest selected value of the dis-
charge for each month. For the analysis, the time 
frames of 1996–2012 (for the historical) and 2022– 
2038, 2039–2055, 2056–2072, 2073–2089, and 
2083–2099 (for the future) were considered with 
a duration of 16 years for each time frame. The 
reason for choosing 16 years interval for each time 
frame is to cover the whole observed discharge data 
for the analysis.

It is recommended to use downscaled climate 
change data due to the scale accuracy reasons for 
ANN simulations. The aim of using downscaling 
climate models is to fill the gap between the 
effects of global and local by layering local-level 
data over larger-scale climate models. The down-
scaled models are mainly related to small areas, 
down to 25 km2, and have higher resolution than 
that represented by global climate model simula-
tions (Diffenbaugh & Ashfaq, 2010). The process 
of downscaling was done using Delta-change 
approach (Camici, Brocca, Melone, & 
Moramarco, 2014; Hay, Wilby, & Leavesley, 2000; 

Keller et al., 2022). Changes in mean climate are 
applied as follows as a simple modification in 
downscaling approach: 

Tnew ¼ Tobsþ Tdelta (1) 

pnew ¼ pobs � pFact (2) 

Tdelta is the difference between the climate change 
model’s (CGM) simulated mean temperature (pro-
jected in the future) and the historical mean tempera-
ture. Pfact is the ratio of the CGM simulated mean 
precipitation in the future time relative to the histor-
ical mean precipitation.

Model structure

A novel model for the prediction of Qd and Qavg 
under historical and climate change conditions using 
ANN with consideration of FFA was proposed. 
Figure 3 represents schematically the structure of the 
model which was developed and utilized in this study. 
There are three major stages in this model, namely: I) 
single station FFA; II) ANN simulation for prediction 
of discharges based on observed and climate change 
data; III) finally, FFA based on predicted Qd and Qavg 
which was obtained from ANN simulations.

In Figure 3, Tmin (new), Tmax (new), and P (new) 
are modified monthly minimum, and maximum tem-
peratures, and precipitation, respectively. The simulation 
process was done using ANN for data prediction. The 
observed (Qobs) and predicted discharges (Qd and 
Qavg) were evaluated using the generalized extreme 
value (GEV) and three-parameter lognormal (LN3) as 
common approaches in FFA (Saf, 2009).

Time Duration 
(Month)

Tmin (new)

Tmax (new)

P (new)

Hidden 
Layer

Qave (Predicted)

Qd (Predicted)

Flood 
Frequency 
Analysis

ANN Simulation Process

Input 

(Observed+Climate change data)
Output GEV and LN3

Qave (Observed)

Qd (Observed)

Target

Qobs (Observed)

Qave (Projected)

Qd (Projected)

Qobs(Projected)

FFA process

Figure 3. Flowchart of the developed model.
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The foundation of the ANN used in this research is 
characterized by a learning algorithm that is backpropa-
gation with the Levenberg–Marquardt method. 
Seventy percent (70%) of the data was used as training 
data, and thirty percent (30%) of the data was used as 
testing data. A hidden layer of 8 to 12 neurons was 
utilized. Figure 4 shows the structure of ANN used in 
this study.

Probability distributions

There are numerous probability distributions (PD) 
used in hydrological sciences. Many different studies 
were carried out to understand which PD represents 
the best fitting for FFA. A number of PDs were pro-
posed such as Gumbel, Normal, Lognormal, GEV, 
Weibull, LN3, and Gamma (Pearson type 3) in the 
FFA (Khosravi, Majidi, & Nohegar, 2012; Ndetei, 
Opere, & Mutua, 2007). For selecting an appropriate 
flood frequency model, several important steps should 
be undertaken such as an in-depth analysis of histor-
ical data, investigation of the flood magnitude using 
the event-descriptive variable, assessment of the 
acceptability among the “distribution type” and the 
“flood sample” to conduct a selection process. 
Finding the best fit probability and the calculation of 
its parameter were proposed as a crucial step (Bobee, 
Cavadias, Ashkar, Bernier, & Rasmussen, 1993; 
Serinaldi, Kilsby, & Lombardo, 2018). In this research, 
a comparison of two commonly acceptable PDs was 
conducted. GEV and LN3 were adopted due to their 
high performance and accuracy in the analysis of the 
statistical characteristics of the observed and predicted 
flood data of the Eel River watershed.

L-Moments method

The L-Moments method, previously developed 
based on mathematical statistics, improves the cal-
culation process in frequency analysis studies 

(Stedinger & Lu, 1995). This approach, which was 
developed by Hosking (1990), has been widely used 
by hydrologists in flood-related studies. Hosking 
and Wallis (1997) concluded that L-moments 
were an alternative system of explaining the shapes 
of PDs. The L-moments are based on the probabil-
ity-weighted moments (PWMs) of Greenwood, 
Landwehr, Matalas, and Wallis (1979) study. The 
L-Moments method has more accuracy compared 
to older frequency methods. Hosking (1990) indi-
cated that the advantage of L-moment ratios in 
comparison to product-moment ratios (PMR) is 
that the former is stronger in the presence of 
extreme values and does not have sample size- 
related bounds. In addition, L-moments and 
L-moment ratios are more efficient than PWMs 
because they are more representative measures of 
distribution scale and shape (Hosking, 1994).

GEV and LN3 were regarded as highly accepted 
and accurate PDs for FFA of various regions in 
Canada (Faulkner, Warren, & Burn, 2016; Zhang, 
Stadnyk, & Burn, 2020). The reasons for choosing 
LN3 over other mentioned methods in NB are the 
feasibility of the LN3 for expressing severe flood 
events for gauging sites, and its accurate perfor-
mance for evaluation of flood events (Aucoin, 
Caissie, El-Jabi, & Turkkan, 2011; Environment 
Canada and New Brunswick Department of 
Municipal Affairs and Environment, 1987). GEV 
with consideration of its theoretical properties is 
a suitable distribution for describing flood events. 
Moreover, according to the theory of extreme value 
that explains annual daily discharge maxima as 
a part of extreme events distribution, GEV can 
accurately link up a probability concerning 
a distribution (Coles, 2001). In addition, GEV is 
the best-fitted PD for the evaluation of extreme 
hydrological events in Canada based on Zhang, 
Stadnyk, and Burn (2020) research which acquired 
227 Hydrometric Basin Network (RHBN) stations, 

Figure 4. Structure of ANN used in this research.
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the sub-set of Canadian hydrometric gauging sta-
tions, for the estimation of parameters using linear 
moments. Furthermore, LN3 and GEV distributions 
were far better choices among other approaches for 
flood forecasting and the best distributions for 
regional FFA for the selected study areas in 
Canada (Yue & Wang, 2004).

Generalized extreme value distribution (GEV)
Based on Robson and Reed (1999), the GEV distribu-
tion has the following cumulative density func-
tion (CDF): 

F xð Þ ¼ exp � 1 �
k x � μÞð1=k
� �

α

2

4

3

5

8
<

:

9
=

;
k�0 (3) 

F xð Þ ¼ exp � exp �
x � μ

α

� �h i
k ¼ 0 (4) 

Where μ,α, and k are the location, scale, and shape 
parameters, respectively. For k> 0 (k< 0) the variable 
x is upper (lower) bounded to μþ α=k. For k> 0 the 
variable x is unbounded.

Three parameters lognormal (LN3)
For a random variable x, if y=ln(x-a) has a normal 
distribution, then x will have a lognormal distribution 
whose probability density function (PDF) can be 
developed as (Singh, 1998): 

F xð Þ ¼
1

x � að Þc
ffiffiffi
2
p

π
exp
� ln x � að Þ � b½ �

2

2c2

" #

(5) 

where a is a positive quantity defined as a lower 
boundary, and b and c2 are the form and scale para-
meters of the distribution. It occurs that b and c2 are 
respectively equal to the mean (�y) and variance s2

y of ln 
(x-a). Thus, the LN3 distribution has three para-
meters: a, b, and c. (x-a) represent a shifted variable. 
The standardized variable u is obtained in the usual 
order: 

u ¼
ln x � að Þ � b

c
(6) 

The CDF of the LN3 distribution can be rewritten as: 

F xð Þ ¼ ò
x
a

1
x � að Þc

ffiffiffi
2
p

π
exp½
� ln x � að Þ � b½ �

2

2c2 dx (7) 

It is not possible to describe the LN3 distribution in 
terms of x using the F as a function because of the 
integral nature of the above equation.

FFA statistical tests

Goodness-of-fit (GOF) tests
The goodness-of-fit (GOF) tests are commonly used to 
test whether the observed data follow a particular 

distribution as a calibration process. The Anderson – 
Darling (AD) and Chi-square (CS) tests were selected 
for the statistical analysis of FFA. These tests are often 
used in FFA and have shown good performance in the 
case of small sample sizes and heavy-tailed distribu-
tions (Farooq, Shafique, & Khattak, 2018; Laio, 2004; 
Önöz & Bayazit, 1995).

The AD test consists of the lists of critical values for 
GOF statistics which were calculated for various sig-
nificance levels (alpha), as well as the acceptance of the 
null hypothesis for each of the level values. The AD 
statistic measures how well the data follows 
a particular distribution. For a specified data set and 
distribution, the better the distribution fits the data, 
the smaller this statistic will be. AD may also be 
considered as a “relative” measure of the GOF between 
different distributions (Predicted vs Observed data) 
for FFA.

The statistic test (A2Þ for AD is defined as:
A2 = � n � S                          (8)

Where      
S= 
Pn

i¼1
2i� 1ð Þ

n logF yið Þ þ log 1 � F ynþ1� ið Þð Þ½ � (9)

In equation 9, n is sample size and F yið Þ represents the 
CDF of the specified distribution.

A CS test, also written as the χ2 test, is a statistical 
hypothesis test that is valid to perform when the sta-
tistic test is chi-squared distributed under the null 
hypothesis. In general, smaller p-values are desirable 
according to this test. The smaller the p-value, the 
more certainty there is that the null hypothesis can 
be rejected. A very small p-value would indicate with 
a great deal of significance that the data distribution 
testing does not follow a standard normal distribution 
(null hypothesis).

The statistic test x2ð Þ for CS is defined as: 

x2 ¼
Xk

i¼1

oi � Eið Þ

Ei
(10) 

Where                       
Ei ¼ n F uð Þ � F ylð Þð Þ (11)

In above equation, n is sample size and F is CDF 
with two variations for upper limit (F uð Þ) and lower 
limit F ylð Þð Þ for the class i.

Results

The results of this study are presented in three phases: 
I) Single FFA without consideration of climate change 
effects; II) ANN simulation based on historical/future 
climate data; III) FFA using calculated Qd and Qavg 
derived from phase II.

The results of the single FFA based on the compar-
ison of GEV and LN3 distributions with observed data 
which is derived from the 01BJ004 hydrological sta-
tion are according to Figure 5.
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The ANN model simulated (Qd) and (Qavg) for 
2022 to 2099 with selected time frames of 2022– 
2038, 2039–2055, 2056–2072, 2073–2089, and 
2083–2099 compared to Qobs values while using 
modified input data (precipitation and tempera-
tures). The three most critical time frames in 
terms of discharge’s magnitude were selected for 
RCP4.5 (2022–2038, 2056–2072, 2073–2089) and 
RCP8.5 (2039–2055, 2073–2089, 2088–2099). 
Figure 6 presents the result of the simulated Qd 
and Qavg compared to Qobs for mentioned time 
frames. This figure shows the designed ANN 
model has the acceptable performance and the 
predicted data can accurately adapt to the beha-
vior of observed data.

The ANN model simulated Qd and Qavg for 
the duration of 2022 to 2099 while using modified 
input data (precipitation and temperatures). 
Figure 7 introduces the results for the predicted 
Qd and Qavg for the RCP4.5 and 8.5 scenarios.

The results of FFA using GEV and LN3 for the most 
critical time frames based on the ANN- simulated Qd 
and Qavg, are illustrated in Figure 8.

Statistical results of ANN simulations for the 
most critical time frames according to the coeffi-
cient of correlation (R) and mean squared error 
(MSE) are presented in Figure 9 for RCP4.5 and 
8.5 respectively. All values of R and MSE for the 
“testing,” “training,” “validation,” and “total” 
stages were proposed. The closer the R-value to 1 
the better the correlation. For MSE, the closer 
values to zero mean better performance of the 
model.

The statistical results of the AD for single and the 
future FFA are presented in Tables 1 and 2:

The statistical results of the CS for single and the 
future FFA are presented in Tables 3 and 4:

Discussion

The results of the study were obtained in three defini-
tive phases. First, the results of a single FFA for the 
01BJ004 hydrological station in the Eel River 
watershed using GEV and LN3 approaches were 
obtained. The aim of utilizing a single FFA is to pre-
dict the discharge for the future time (100 years) with-
out consideration of climate change effects. Based on 
Figure 5, and Tables 1 to 4, it is observed that GEV is 
a better fitting method for the prediction of discharge 
due to the smaller values of A 2 and P-value based on 
the AD and CS tests, respectively.

For the prediction of Qd and Qavg using ANN with 
modified input data under the influence of RCP4.5 
and 8.5 scenarios, the future period 2022–2099 was 
considered. For obtaining better results, the future 
period was divided into five intervals of 2022–2038, 
2039–2055, 2056–2072, 2073–2089, and 2083–2099. 
The reason for choosing 16  years of duration for 
each interval is the better adaptability and comparison 
with available Qobs. Based on the obtained results 
from the simulation process, the three most critical 
time frames with the highest values of predicted dis-
charges were selected for RCP4.5 (2022–2038, 2056– 
2072, 2073–2089) and RCP8.5 (2039–2055, 2073– 
2089, 2083–2099). It is concluded that the developed 
novel model can accurately predict Qd and Qavg for 
RCP4.5 and 8.5 based on the comparison of predicted 
versus observed data and the acceptable statistical 
results in Figure 6. It is worth mentioning that ANN 
results based on Figure 6 miss the highest peaks in 
some years and there is a shift in time in some 
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Figure 5. Single flood frequency analysis (FFA) using observed data (Qobs).
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Figure 6. Comparison of observed and ANN predicted (Qd and Qavg) discharges based on the RCP4.5 and RCP8.5 for the critical 
time frames.
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instances due to the preprogrammed selection of 
training data by the model, the complexity in the 
architecture design of ANN, and the importance of 
hyperparameters in the design phase of ANN, such as 
learning rate and regularization strength. Moreover, 
according to Figure 9, it is observed that R and MSE 
have acceptable values, the more the R and MSE values 

are respectively closer to 1 and 0 the better the perfor-
mance of the model, for the (“training,” “validation,” 
“test,” and “total”) sections. This derived fact shows 
that the developed model is working very well for the 
prediction of future Qd and Qavg by means of the 
accurate correlation between predicted and observed 
data.
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Figure 6. (Continued).
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Figure 7. The total predicted discharges (Qd and Qavg) under the effects of RCP4.5 and 8.5 scenarios for the period of 2022–2099.
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The predicted Qd and Qavg with consideration of 
the RCP4.5 and 8.5 scenarios using ANN for the entire 
future period including the most critical time frames 
represented in Figure 7. The model simulation results 
show the higher values of Qd in comparison to Qavg 
for the two scenarios. The main reason for the differ-
ences between the two series of predicted discharges is 
a selection of observed discharge data for the Target 
section of the ANN model. The observed Qd has 
higher values in comparison to the observed Qavg. 
The predicted Qd has the highest values between 

2054 and 2068 for RCP4.5, while the highest values 
for RCP8.5 were predicted between 2041 and 2051. 
For the predicted Qavg, the highest values occurred 
between 2023 to 2035 and 2078 to 2099 for RCP4.5, 
while RCP8.5 has the highest values between 2039 to 
2055 and 2065 to 2084.

FFA based on the predicted Qd and Qavg, which 
was obtained by ANN simulation, was done using the 
GEV and LN3 approaches according to Figure 8. This 
figure compared the output data of FFA based on the 
predicted Qd and Qavg in two series (RCP 4.5 and 8.5) 
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Figure 8. Future FFA based on the predicted discharges (Qd and Qavg) under the effects of RCP4.5 and 8.5 scenarios for the critical 
time frames.
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for the most critical time frames. According to this 
figure, the highest projected discharges were recorded 
in two critical time frames of 2056–2072 and 2039– 
2055 for RCP 4.5 and 8.5, respectively. Furthermore, 
the FFA based on the Qd has higher values of pro-
jected discharges in comparison to the FFA according 
to the Qavg due to the higher values of the predicted 
Qd for each critical time frame. Moreover, for critical 
time frames of 2056–2072 and 2073–2089 based on the 
Qd of RCP4.5, LN3 has a better performance in com-
parison to GEV. On the other hand, for the critical 

time frames of 2073–2089 and 2083–2099, according 
to the Qavg of RCP8.5, LN3 has better performance 
compared to GEV.

LN3 is a better fitting approach for the future FFA 
related to the critical time frames of 2056–2072 and 
2073–2089 for the predicted Qd of RCP4.5 and 2073– 
2089 and 2083–2099 for the predicted Qavg of RCP8.5 
based on the statistical results from Tables 1 to 4 which 
were derived according to the CS and AD tests. For the 
mentioned time frames, P-values LN3 are less than 
GEV according to Tables 1 and 2 of the CS test, and 
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Figure 8. (Figure8b).
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(Qd)                                                          2022-2038-RCP4.5                                            (Qavg)

(Qd)   2056-2072-RCP4.5                                            (Qavg)

(Qd)                                                          2073-2089-RCP4.5                                            (Qavg)

Figure 9. Statistical results of ANN simulations for the predicted discharges (Qd and Qavg) based on the RCP4.5 and RCP8.5 for the 
critical time frames.
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statistics (A 2) LN3 are less than GEV based on 
Tables 3 and 4 of the AD test, so it shows that LN3 is 
a better fitting approach than GEV. For other time 
frames, the statistical results were in acceptable ranges 
of fitting (P-values ≤0.05 of the CS test and equal 
statistics of the AD test), and no significant differences 
were observed between the performance of GEV 
and LN3.

Conclusion

Climate change will undoubtedly alter flood problems 
in the Eel River watershed according to the obtained 
results from Figures 5–8. The success of industries 
(e.g. agriculture, forestry, recreational fisheries, and 
others) intrinsically linked to the climate conditions, 
are making NB watersheds such as the Eel River 
watershed particularly vulnerable to flooding occur-
rences. Other factors, such as changes in land cover 
and land use, are also likely to modify flows in the 
watershed. Shuster, Bonta, Thurston, Warnemuende, 
and Smith (2005) mentioned that the land used devel-
opment strongly correlates with the population 
growth proportion. This tends to increase the ratio 
of the impervious catchment surfaces, translating 
into faster surface runoff and, therefore, faster and 
more intense peak flooding. Such conditions would 
then be conducive to flooding. However, recent data 
for the region indicate a decrease (−5.6% by Statistic 
Canada, 2023) in population between 2016 and 2021, 
and very few developments occur during the same 

period in the Eel River watershed. Although develop-
ment remains a possibility, nothing currently suggests 
this scenario. Recently, de Souza Cruz (2021) carried 
out a study to simulate flooding by considering 
changes in future climate (RCP 4.5 and RCP8.5) in 
combination with changes in land use in a Riverview 
neighborhood located southeast of the NB. Based on 
this research, it is concluded that the most significant 
change (76% increase in flood discharge) would occur 
in the case of intensive development (clearcutting of 
an urban woodlot) and the RCP8.5 scenario over 
a 2100 horizon. It should be noted that, according to 
the results of this study, climate change plays a less 
significant role. In contrast, land surface modification 
plays a much more critical role in modifying the 
hydrological regime and as an explanatory source of 
simulated future flooding. In the case of the Eel River 
watershed, the expected changes will be mainly caused 
by climate, as little development is expected in this 
devitalized region (Laplante & Simard, 2013).

The ANN model was effective in predicting the 
different flow components (Figures 6 and 7) using 
historical and future climate data. In addition, accord-
ing to the statistical analysis (Figure 9), all the simula-
tion steps were done accurately, and the output results 
had acceptable precision (Figure 6). According to the 
obtained results from the ANN simulation process, the 
three most critical time frames with the highest values 
of predicted discharges were 2022–2038, 2056–2072, 
and 2073–2089 for RCP4.5 and 2039–2055, 2073– 
2089, and 2083–2099 for RCP8.5. Moreover, it is 

Table 1. AD results for GEV distribution.
Name Statistics

Single FFA A 2 = 0.64467
2022–2038–4.5-Daily A 2 = 0.2458
2056–2072–4.5-Daily A 2 = 0.41285
2073–2089–4.5-Daily A 2 = 0.55827
2022–2038–8.5-Daily A 2 = 0.44686
2056–2072–8.5-Daily A 2 = 0.27379
2073–2089–8.5-Daily A 2 = 0.36612
2039–2055–4.5-Monthly A 2 = 0.4458
2073–2089–4.5-Monthly A 2 = 0.38496
2083–2099–4.5-Monthly A 2 = 0.37233
2039–2055–8.5-Monthly A 2 = 0.44686
2073–2089–8.5-Monthly A 2 = 0.60433
2083–2099–8.5-Monthly A 2 = 0.5554

Table 2. AD results for LN3 distribution.
Name Statistics

Single FFA A 2 = 0.81673
2022–2038–4.5-Daily A 2 = 0.18814
2056–2072–4.5-Daily A 2 = 0.21285
2073–2089–4.5-Daily A 2 = 0.35827
2022–2038–8.5-Daily A 2 = 0.4047
2056–2072–8.5-Daily A 2 = 0.26445
2073–2089–8.5-Daily A 2 = 0.28819
2039–2055–4.5-Monthly A 2 = 0.2458
2073–2089–4.5-Monthly A 2 = 0.37249
2083–2099–4.5-Monthly A 2 = 0.36041
2039–2055–8.5-Monthly A 2 = 0.42063
2073–2089–8.5-Monthly A 2 = 0.30433
2083–2099–8.5-Monthly A 2 = 0.1554

Table 3. CS results for GEV distribution.
Name Statistics P-value

Single FFA X 2 =  = 5.75 0.0464
2022–2038–4.5-Daily X 2 = 3.12 0.0543
2056–2072–4.5-Daily X 2 = 2.41 0.0594
2073–2089–4.5-Daily X 2 = 8.06 0.0178
2022–2038–8.5-Daily X 2 = 1.71 0.0562
2056–2072–8.5-Daily X 2 = 3.54 0.0504
2073–2089–8.5-Daily X 2 = 2.89 0.0594
2039–2055–4.5-Monthly X 2 = 2.41 0.0573
2073–2089–4.5-Monthly X 2 = 4.53 0.0512
2083–2099–4.5-Monthly X 2 = 3.82 0.0578
2039–2055–8.5-Monthly X 2 = 5.96 0.0565
2073–2089–8.5-Monthly X 2 = 5.65 0.0530
2083–2099–8.5-Monthly X 2 = 1.71 0.0562

Table 4. CS results for LN3 distribution.
Name Statistics P-value

Single FFA X 2 = 2.75 0.0528
2022–2038–4.5-Daily X 2 = 4.12 0.0504
2056–2072–4.5-Daily X 2 = 3.45 0.0394
2073–2089–4.5-Daily X 2 = 14.41 0.0007
2022–2038–8.5-Daily X 2 = 3.82 0.0578
2056–2072–8.5-Daily X 2 = 4.71 0.0562
2073–2089–8.5-Daily X 2 = 5.82 0.0578
2039–2055–4.5-Monthly X 2 = 3.71 0.0562
2073–2089–4.5-Monthly X 2 = 5.53 0.0539
2083–2099–4.5-Monthly X 2 = 4.41 0.0594
2039–2055–8.5-Monthly X 2 = 6.64 0.0530
2073–2089–8.5-Monthly X 2 = 6.24 0.0330
2083–2099–8.5-Monthly X 2 = 3.82 0.0278
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concluded that based on the FFA the magnitudes of 
flood recurrence for the future time period of 100  
years will dramatically increase based on the most 
critical time frames. The most significant increase 
will occur in 2056–2072 and 2039–2055 for RCP 4.5 
and 8.5, respectively (Figure 8), which means floods 
with bigger discharge magnitudes will hit the Eel River 
watershed due to the climate change effects.

The reliability of the results is so crucial for deci-
sion-makers and government sectors. In this regard, 
these results (predicted discharge from ANN and pro-
jected discharges from the single and FFA) appear 
very significant for decision-makers and government 
in order to cope with the potentially disastrous effects 
of climate change on flood magnitudes, especially 
during the critical time frames in the Eel River 
watershed. The analyses showed that the Eel River 
watershed will be impacted by severe floods by com-
parison of projected verse predicted discharges with 
about a 50% increase in Qd and Qavg for each critical 
time frame based on Figure 8. The upward trend of 
increase in discharges is one of the indications of 
climate change effects on future flood occurrence in 
this watershed.

Understanding the nature and potential conse-
quences of climate change at a regional scale in an 
ungauged context remains a challenge. So, future 
studies are needed to take into consideration the 
ungauged contexts under climate change issues to 
produce regional equations that suit the NB con-
text. In addition, land use and land cover changes 
might also affect flooding, but it is difficult at this 
time to extrapolate future development or any exo-
genous disturbances in this watershed. Moreover, 
the main limitation of using ANN is the fixed 
number of input layers within an architecture of 
the model that causes taking fixed input and out-
put for any operation. So, for many pattern recog-
nition tasks, this is a limiting constraint. In order 
to improve the performance of the ANN model in 
terms of the detection of the highest peaks for all 
years and satisfy the issue of shifting in time, firstly 
it is recommended to increase the diversity selec-
tion of the samples in the training dataset, espe-
cially those that represent extreme events and 
variations in the highest peaks, to give the ANN 
a better basis for learning and generalization. 
Secondly, to capture the complexity of the forecast 
more accurately, the model architecture can be 
modified. This can involve investigating various 
network topologies, deepening the network, or 
adding extra layers or nodes to help the model 
learn more complex patterns. Thirdly, by modify-
ing parameters like learning rate, regularization 
strength, or batch size within a model architecture, 
the ability of the ANN model to effectively capture 
the highest peaks can be increased.
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