UQAM logo
Page d'accueil de l'UQAM Étudier à l'UQAM Bottin du personnel Carte du campus Bibliothèques Pour nous joindre

Service des bibliothèques

Veille bibliographique sur les inondations
UQAM logo
Veille bibliographique sur les inondations
  • Bibliography
  1. Vitrine des bibliographies
  2. Veille bibliographique sur les inondations
  3. Climate teleconnection-driven stochastic simulation for future water-related risk management
Veille bibliographique sur les inondationsVeille bibliographique sur les inondations
  • Bibliography

Climate teleconnection-driven stochastic simulation for future water-related risk management

RIS

Format recommandé pour la plupart des logiciels de gestion de références bibliographiques

BibTeX

Format recommandé pour les logiciels spécialement conçus pour BibTeX

Type de ressource
Article de revue
Auteurs/contributeurs
  • Lee, Taesam (Auteur)
  • Ouarda, Taha B. M. J. (Auteur)
Titre
Climate teleconnection-driven stochastic simulation for future water-related risk management
Résumé
Water risk management has been adversely affected by climate variations, including recent climate change. Climate variations have highly impacted the hydrological cycles in the atmosphere and biosphere, and their impact can be defined with the teleconnection between climate signals and hydrological variables. Water managers should practice future risk management to mitigate risks, including the impact of teleconnection, and stochastically simulated scenarios can be employed as an effective tool to take advantage of water management preparation. A stochastic simulation model for hydrological variables teleconnected with climate signals is very useful for water managers. Therefore, the objective of the current study was to develop a novel stochastic simulation model for the simulation of synthetic series teleconnected with climate signals. By jointly decomposing the hydrological variables and a climate signal with bivariate empirical mode decomposition (BEMD), the bivariate nonstationary oscillation resampling (B-NSOR) model was applied to the significant components. The remaining components were simulated with the newly developed method of climate signal-led K-nearest neighbor-based local linear regression (CKLR). This entire approach is referred to as the climate signal-led hydrologic stochastic simulation (CSHS) model. The key statistics were estimated from the 200 simulated series and compared with the observed data, and the results showed that the CSHS model could reproduce the key statistics including extremes while the SML model showed slight underestimation in the skewness and maximum values. Additionally, the observed long-term variability of hydrological variables was reproduced well with the CSHS model by analyzing drought statistics. Moreover, the Hurst coefficient with slightly higher than 0.8 was fairly preserved by the CSHS model while the SML model is underestimated as 0.75. The overall results demonstrate that the proposed CSHS model outperformed the existing shifting mean level (SML) model, which has been used to simulate hydroclimatological variables. Future projections until 2100 were obtained with the CSHS model. The overall results indicated that the proposed CSHS model could represent a reasonable alternative to teleconnect climate signals with hydrological variables.
Publication
Journal of Hydrology
Volume
662
Pages
133834
Date
2025-12-01
Abrév. de revue
Journal of Hydrology
DOI
10.1016/j.jhydrol.2025.133834
ISSN
0022-1694
URL
https://www.sciencedirect.com/science/article/pii/S0022169425011722
Consulté le
2025-09-05 00 h 14
Catalogue de bibl.
ScienceDirect
Référence
Lee, T., & Ouarda, T. B. M. J. (2025). Climate teleconnection-driven stochastic simulation for future water-related risk management. Journal of Hydrology, 662, 133834. https://doi.org/10.1016/j.jhydrol.2025.133834
Axes du RIISQ
  • 1 - aléas, vulnérabilités et exposition
  • 2 - enjeux de gestion et de gouvernance
  • 3 - aspects biopsychosociaux
  • 5 - aide à la décision, à l’adaptation et à la résilience
Enjeux majeurs
  • Inégalités et événements extrêmes
  • Prévision, projection et modélisation
  • Risques systémiques
Secteurs et disciplines
  • Nature et Technologie
Types d'événements extrêmes
  • Évènements liés au froid (neige, glace)
  • Sécheresses et canicules
Lien vers cette notice
https://bibliographies.uqam.ca/riisq/bibliographie/7GG4WJ7V

UQAM - Université du Québec à Montréal

  • Veille bibliographique sur les inondations
  • bibliotheques@uqam.ca

Accessibilité Web