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Abstract

Several observational precipitation products that provide high temporal (≤3 h)

and spatial (≤0.25�) resolution gridded estimates are available, although no

single product can be assumed worldwide to be closest to the (unknown) “real-
ity.” Here, we propose and apply a methodology to quantify the uncertainty of

a set of precipitation products and to identify, at individual grid points, the

products that are likely wrong (i.e., outliers). The methodology is applied over

eastern North America for the 2015–2019 period for eight high-resolution

gridded precipitation products: CMORPH, ERA5, GSMaP, IMERG, MSWEP,

PERSIANN, STAGE IV and TMPA. Four difference metrics are used to quan-

tify discrepancies in different aspects of the precipitation time series, such as

the total accumulation, two characteristics of the intensity-frequency distribu-

tion, and the timing of precipitating events. Large regional and seasonal varia-

tions in the observational uncertainty are found across the ensemble. The

observational uncertainty is higher in Canada than in the United States,

reflecting large differences in the density of precipitation gauge measurements.

In northern midlatitudes, the uncertainty is highest in winter, demonstrating

the difficulties of satellite retrieval algorithms in identifying precipitation in

snow-covered areas. In southern midlatitudes, the uncertainty is highest in

summer, probably due to the more discontinuous nature of precipitation.

While the best product cannot be identified due to the lack of an absolute ref-

erence, our study is able to identify products that are likely wrong and that

should be excluded depending on the specific application.
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1 | INTRODUCTION

Several applications require accurate historical precipita-
tion values: for example, calculating the Earth water
cycle budget, estimating trends in hydrometeorological

extremes, verifying weather forecasts and evaluating
weather and climate simulations (Beck et al., 2017b;
Hossain & Huffman, 2008; Nissen & Ulbrich, 2017;
Trenberth, 2011). Precipitation gauge measurements usu-
ally provide accurate precipitation estimates at the local
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scale, except for solid precipitation due to instrumental
issues related to wind-induced snowfall undercatch when
a shield is not used (Nitu et al., 2018; Rasmussen
et al., 2012). However, for specific applications, including
model evaluation, station data suffer from spatial repre-
sentativity issues (Chen & Knutson, 2008; Gervais
et al., 2014; Herold et al., 2016; Prein & Gobiet, 2017).
For this reason, gridded precipitation datasets have been
developed merging in situ and remotely sensed observa-
tions with optimal interpolation or kriging, and—in the
case of reanalyses—merging observations and back-
ground model with data assimilation techniques (e.g.,
Harris et al., 2020; Meyer-Christoffer et al., 2011).
Gridded precipitation products are generally assumed to
provide accurate precipitation estimates in regions with
high density of stations, which is unfortunately not the
case for the whole globe.

In the past few decades, great progress has been made
to improve estimates of precipitation at high temporal
(subdaily time scales) and spatial (usually finer than
0.25�) resolutions by combining gauge measurements
with meteorological radar and satellite remote sensing
data (Beck et al., 2019a, 2017b; Derin & Yilmaz, 2014;
Sun et al., 2018; Trenberth et al., 2017), or by assimilating
observations in reanalysis products (e.g., Hersbach
et al., 2019). Their refined temporal and spatial resolution
and their nearly worldwide coverage make these prod-
ucts highly valuable for numerous applications, including
the evaluation of precipitation simulated by weather and
climate models that require high-resolution areal-mean
estimations (e.g., Di Luca et al., 2021; Fosser et al., 2015;
Huffman et al., 2015; Prein & Gobiet, 2017). However,
the quality of these products depends on several factors,
including the type of satellite sensor (e.g., infrared or
microwave) used to estimate the precipitation (Beck
et al., 2017b, 2019a; Derin & Yilmaz, 2014; Liu &
Allan, 2012; Sun et al., 2018), the underlying coverage of
the surface (e.g., errors can be larger in snow-covered
areas; Derin & Yilmaz, 2014; Tian & Peters-Lidard, 2010),
the meteorological phenomena producing precipitation
(e.g., satellite-based products tend to overestimate the
intensity of convection; Beck et al., 2017b; Derin &
Yilmaz, 2014; Gehne et al., 2016; Sun et al., 2018), or the
phase and type of hydrometeors present in the atmo-
sphere (e.g., larger uncertainty for snowfall than for rain-
fall; Lockhoff et al., 2019; Prein & Gobiet, 2017; Tian &
Peters-Lidard, 2010). Corrections of these products based
on gauged measurements tend to reduce their differences
(Gehne et al., 2016; Prein & Gobiet, 2017), but these cor-
rections depend strongly on the availability and quality
of the gauge data used (Sun et al., 2018). For example, in
regions with high station density, gauge-corrected prod-
ucts are usually unbiased regarding monthly or even

daily time scales, depending on the type of correction
being applied. However, most in situ observations are
only available at a daily frequency, limiting the develop-
ment of corrections at subdaily time scales (Zolina
et al., 2014).

Several studies have evaluated differences among pre-
cipitation products using time-mean values (e.g., Gehne
et al., 2016; Prein & Gobiet, 2017; Sun et al., 2018). Sun
et al. (2018) compared the global distribution of time-
mean precipitation between 2003 and 2010 across
30 products obtained using satellite, in situ and reanalysis
data. Their findings show that most products agree well
on the overall spatial patterns, but they show large dis-
crepancies across products over several land regions
(including North America) where mean precipitation esti-
mates vary from 600 mm�year−1 to almost 900 mm�year−1.
A similar global analysis was carried out by Gehne et al.
(2016) for monthly-mean precipitation between 2001 and
2012 using 13 precipitation products (eight observation-
based products and five reanalyses). They found large dif-
ferences near the intertropical convergence zone, over
land areas in the summer hemisphere (notably over west-
ern North America), and in the Atlantic over the western
boundary of the Gulf Stream. They also demonstrated that
bias-corrected versions of the products are more consistent
for annual, monthly and daily precipitation values when
compared to their uncorrected counterparts.

Agreement in the time-mean precipitation does not
ensure, however, a consistent representation of the daily
or subdaily temporal variability, nor of the synchronicity
of precipitation events (Catto et al., 2015; Di Luca
et al., 2021; Gehne et al., 2016; Sun et al., 2018). Over
North America, Gehne et al. (2016) showed that PER-
SIANN, GPCP and TMPA have similar annual and
monthly-mean precipitation values but different intensity
distributions of daily precipitation values, showing that
precipitation occurs differently across the three datasets.
To identify differences in precipitation products arising
from the variability or the chronology of events, several
metrics have been used. Aghakouchak et al. (2012) assessed
the mean error (bias) and the random error (variability and
timing error) between the satellite and radar-based precipi-
tation products CMORPH, TMPA and STAGE IV over con-
tinental United States. For most of the domain, differences
between products for daily and 3-hourly data were largely
explained by the random error with small contribution
from the bias. Guilloteau et al. (2022) compared IMERG
and a product based on gauge and radar precipitation mea-
surements (the Multi-Radar/Multi-Sensor System, MRMS)
over the southeast United States between January 2018 and
April 2020 using a similar decomposition of the error. They
showed that the representation of the fine-scale (spatial and
temporal) precipitation is the main source of disparities
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between both products. The temporal and spatial consistency
of extreme daily precipitation was investigated by Timmer-
mans et al. (2019) over the continental United States for five
gauge-based and three satellite-based products (including
TMPA and CMORPH). Products based on precipitation
gauges shared strong similarities in their representation of
extreme precipitation, while the consistency between
satellite-based products and gauge-based ones depends
strongly on the region: high in the southeast and low in the
west and over mountainous regions.

Studies comparing precipitation products generally
aim to assess their performance or consistency, two dif-
ferent but often related concepts. Performance quantifies
the difference between the estimate and a reference data-
set that is considered to provide accurate precipitation
estimates and is usually based on precipitation gauges or
radar measurements. Consistency quantifies the level of
agreement between a set of products and is estimated
based on comparisons between them and does not
require a reference dataset. High consistency is obtained
when products are similar, implying that the observa-
tional uncertainty is low. High consistency is often
assumed to imply good performance, but this implication
can be unsound when the products being evaluated are
strongly dependent on each other (e.g., due to similar
input data), leading to erroneous conclusions. This para-
digm can be illustrated using results from the study of
Gehne et al. (2016). They show that TMPA and GPCP
monthly-mean precipitation values are similar over
North America, suggesting low observational uncertainty.
However, GPCP and TMPA are both based on similar
gauge observations. Hence, in this case, the low observa-
tional uncertainty is associated with a strong dependence
among products coming from the use of a similar input
dataset and will not necessarily imply good performance.
The discussion of the relationship between performance
and dependence has been extensively addressed when eval-
uating large ensembles of climate models (Knutti, 2010;
Knutti et al., 2017; Nearing et al., 2016). For satellite-based
products, the dependence can come from using the same
input data (e.g., the microwave and infrared data assimi-
lated in CMORPH, IMERG, TMPA and GSMaP use com-
mon input sources such as the data from the TRMM
microwave imager), similar data and methods used to cor-
rect the satellite estimates (e.g., both TMPA and IMERG
use the GPCC v6 Monitoring gridded product) or common
approaches to convert radiances (or reflectivities) to precipi-
tation estimates (e.g., CMORPH and GSMaP both use a
similar technique to estimate changes in precipitation rates
from infrared satellite data; Bytheway et al., 2020).

Today, the coexistence of multiple precipitation
products and the lack of well-established metrics to under-
stand the discrepancies and quantify their uncertainties

(i.e., their level of consistency) makes it difficult to deter-
mine whether a product is suitable for a study. The aim of
this study is to develop and apply a methodology to quan-
tify the uncertainty of a set of eight 3-hourly gridded pre-
cipitation products over eastern North America. The
uncertainty is quantified using four metrics that evaluate
different aspects of the precipitation gridded products in a
hierarchical way: a metric quantifying errors in mean pre-
cipitation, two metrics incorporating information about
3-hourly precipitation variability, and a fourth metric addi-
tionally considers the timing of precipitation events. The
quantification of the uncertainty associated with this
ensemble of gridded observation datasets includes a
method for identifying the least likely products (i.e., out-
liers) at individual grid points and seasons. The study also
includes an analysis of the sensitivity of our results to the
temporal (3-hourly, 6-hourly and daily) and spatial (0.25�

and 0.75�) scales of the data.
The article is organized as follows. Section 2 describes

the datasets used, including the types of corrections used
by each product. The methodology is presented in sec-
tion 3. In section 4, the uncertainty used is introduced
(section 4.1) and its metrics (section 4.2), regional (sec-
tion 4.3) and seasonal (section 4.4) variabilities are inves-
tigated. The sensitivity to the choice of the resolution
(temporal and spatial) of the data is presented in sec-
tion 4.5. Some discussion about the uncertainty metric
and the relative performance/dependence of the products
and concluding remarks are presented in section 5.

2 | DATA

The study focuses on eastern North America, bounded by
latitudes 25�N and 60�N, and longitudes 100�W and
60�W (Figure 1). The study separates the analysis accord-
ing to six regions: northeast Canada (NCA), southeast
Canada and the Great Lakes (CAGL), northeast
United States (NEUS), southeast United States (SEUS),
Gulf of Mexico (GM) and Atlantic Ocean (AO). The com-
parison between precipitation products is carried over a
5-year period from 2015 to 2019, which is the longest
period common to all products (Table 1).

The precipitation products used are based on multiple
instruments (satellite based, surface radar and rain
gauges) and even modelled data (e.g., reanalysis prod-
ucts). These products were selected because they are
widely utilized not only in North America but also glob-
ally. Table 1 provides an overview of the eight precipita-
tion products used in the study, detailing their complete
names and versions, spatiotemporal resolution, data cov-
erage and input data sources. Additional information
about the correction methods employed by each product
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is given in Table 2. Furthermore, a comparison of the sat-
ellite sensors utilized by each product is provided in
Table S2, Supporting Information.

The Climate Prediction Center (CPC) morphing tech-
nique (CMORPH) precipitation version 1 estimate incor-
porates microwave (MW) and infrared (IR) observations
from multiple instruments (Table S2) and is corrected
using gauge observations. The instantaneous precipita-
tion is estimated purely from MW observations on polar-
orbiting platforms, and between two satellite overpasses,
changes in the precipitation field are estimated by taking
into account the cloud motions derived from IR observa-
tions (the morphing process; Joyce et al., 2004). Finally,
the estimate is debiased using a gauge-based analysis
over land and using a product merging satellite and
gauge observations over ocean (see Table 2 for details).

The Global Satellite Mapping of Precipitation (GSMaP)
version 7 estimate integrates MW and IR observations
(Table S2) and is corrected using gauge observations fol-
lowing an approach like CMORPH. The instantaneous
precipitation is estimated from MW observations. How-
ever, in GSMaP, the interpolation method between two
polar-orbiting satellite overpasses considers both cloud
motion and changes in cloud top height retrieved from IR
observations. Then, the estimate is debiased over land
using a gauge-based gridded product, no correction is
applied over ocean (Table 2).

The Precipitation Estimation from Remotely Sensed
Information using Artificial Neural Networks (PERSIANN)–

Cloud Classification System (CCS)–Climate Data Record
(CDR) is a corrected version of the PERSIANN–CCS product.
First, in the PERSIANN–CCS product, the IR dataset
(Table S2) is partitioned using temperature thresholds to
identify and separate individual cloud patches. Second, pre-
cipitation at each location is estimated based on an empirical
relationship between cloud classification and the local bright-
ness temperature. The empirical relationship was obtained
from radar observations over the United States (Hong
et al., 2004; Hsu et al., 1997). Then, the estimate is debiased
over land and ocean using monthly-mean precipitation from
a product merging satellite and gauge observations (Table 2).

Tropical Rainfall Measuring Mission (TRMM) multi-
satellite precipitation analysis (TMPA) product 3B42 Ver-
sion 7 incorporates MW and IR observations from multi-
ple sources (Table S2) and is corrected using gauge
observations. The instantaneous precipitation is esti-
mated for each MW sensor using the Goddard profiling
algorithm (GPROF). For the study period, the version
GPROF2010 is used (Huffman & Bolvin, 2018). These
MW estimates are climatologically calibrated to match
TRMM Combined Radar-Radiometer Algorithm and
merged. When MW data is not available, precipitation is
exclusively estimated based on IR observations. However,
this method exhibits inferior performance compared to
the use of MW observations (Huffman et al., 2007).
Finally, the estimate is corrected over land using a
monthly product based on gauge observations, no correc-
tion is applied over ocean (Table S2).

The Integrated Multi-satellitE Retrievals for Global
precipitation measurement (IMERG) version 06 integrates
IR and MW observations from a higher number of sen-
sors than TMPA (Table S2) and is corrected using gauge
observations. MW observations for each sensor are cali-
brated to match GPM Combined Radar-Radiometer Algo-
rithm and are subsequently converted to precipitation
estimates using an updated version of the Goddard profil-
ing algorithm, GPROF2014v2. All MW estimates are cali-
brated with the Combined Radar-Radiometer product
(CORRA) and with the Global Precipitation Climatology
Project (GPCP) monthly Satellite-Gauge estimates. Simul-
taneously, an IR estimate is computed using the
PERSIANN-CCS approach and calibrated with MW esti-
mates. MW precipitation estimates are then merged using
the CMORPH interpolation method. When the gap
between the two MW observations is longer than 90 min,
the IR precipitation estimate is considered. The merged
estimate is finally corrected over land using the same ref-
erence gauge dataset as TMPA (Table 2).

STAGE IV dataset is based on surface radar measure-
ments from National Weather Service River Forecast
Centers (RFCs) over continental United States (Lin &
Mitchell, 2005; Nelson et al., 2016). RFCs use a network

FIGURE 1 Domain of the study including the six regions:

northeast Canada (NCA, grey), southeast Canada and the Great

Lakes (CAGL, brown), northeast United States (NEUS, green),

southeast United States (SEUS, orange), Gulf of Mexico (GM, pale

blue) and Atlantic Ocean (AO, blue). [Colour figure can be viewed

at wileyonlinelibrary.com]
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of Weather Surveillance Radar-1988 Doppler radars.
RFCs in our domain use the MRMS estimator based on
radar and gauge observations. Manual quality control of
the RFC estimates is also performed (Nelson et al., 2016).
Finally, RFC precipitation estimates are combined, and
bias-adjusted in near real-time based on automated gauge
measurements (Prat & Nelson, 2015).

Precipitation estimates from the European Centre for
Medium-Range Weather Forecasts Reanalysis version
5 (ERA5; Hersbach et al., 2020) are based on a state-of-

the-art numerical weather prediction model assimilating
observational data from multiple sources. ERA5 has a
finer temporal and spatial resolution than the previous
ERA-Interim reanalysis (Dee et al., 2011). ERA5 has
benefited from notable improvements, such as the assimi-
lation of humidity-sensitive satellite channels using the
new all-sky assimilation approach and the use of new
parameterizations of physical processes (large-scale
clouds, microphysics). It is important to note that ERA5
assimilates most of the satellite radiance measurements

TABLE 1 Abbreviation, name and version, reference, native spatial (Δx) and temporal (Δt) resolution, available period and spatial

coverage, and input data sources of the precipitation datasets used in the study.

Abbreviation Full name (version) References
Δx
(�)

Δt
(h)

Available
period

Spatial
coverage Data source

CMORPH Climate Prediction
Center morphing
technique (V1.0)

Joyce et al. (2004) 0.25 1 1998/01–
present

Quasi-
global
(60�N–
60�S)

Satellite/gauge

GSMaP Global Satellite
Mapping of
Precipitation (V7)

Ushio et al. (2009) 0.1 1 2014/03–
present

Quasi-
global
(60�N–
60�N)

Satellite/gauge

PERSIANN Precipitation
Estimation from
Remotely Sensed
Information using
Artificial Neural
Networks (CCS-CDR)

Hsu et al. (1997,
1999) and
Sadeghi et al.
(2021)

0.04 3 1983/01–
present

Quasi-
global
(60�N–
60�S)

Satellite/gauge

TMPA Tropical Rainfall
Measuring Mission
multi-satellite
precipitation analysis
(3B42)

Huffman et al.
(2007)

0.25 3 1998/01–
2019/12

Quasi-
global
(50�N–
50�S)

Satellite/gauge

IMERG Integrated Multi-
satellitE Retrievals
for Global
precipitation
measurement
(precipitationCal, V6)

Huffman
et al. (2018, 2020)

0.1 0.5 2000/06–
present

Global Satellite/gauge

STAGE IV NCEP/EMC US
Gridded Radar-
Estimated
Precipitation with
Bias Removal (stage
IV)

Lin and Mitchell
(2005)

�0.05 1 2002/01–
present

CONUS Surface radar/gauge

ERA5 European Centre for
Medium-range
Weather Forecasts
Reanalysis 5 High-
Resolution

Hersbach et al.
(2020)

0.25 1 2008/01–
present

Global Model with data
assimilation
(satellite/gauge/
surface radar)

MSWEP Multi-Source Weighted-
Ensemble
Precipitation (V2.8)

Beck et al. (2019a,
2019b) and
GloH20 (2021)

0.1 3 1998/01–
2019/12

Global IMERG/ERA5/gauge

1018 PICART ET AL.
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(IR and MW) used by the other products and radar reflec-
tivity measurements over continental United States (used
in STAGE-IV). ERA5 does not assimilate gauge-based
products.

Multi-Source Weighted-Ensemble Precipitation
(MSWEP) version 2.8 combines precipitation estimates
from IMERG (0.1�/1 h) and ERA5 (0.25�/1 h) with daily
gauge observations from various sources (Beck et al., 2019b,
2017a; GloH20, 2021). Prior to merging, ERA5 estimate is
corrected to address its wet day bias. The merging process
incorporates local climate conditions, orography, and air
temperature to account for regional variations. Additionally,
the intensity distribution of the final estimate is corrected to
reduce spurious drizzle and artificial peaks resulting from
the merging of different products. The estimates are then
corrected over land based on daily gauge measurements
(Table 2).

3 | METHODS

3.1 | Precipitation data preprocessing

The eight datasets provide precipitation estimates at dif-
ferent temporal and horizontal resolutions. To facilitate
the comparison, all datasets were spatially interpolated to

the coarser grid mesh (0.25� lat/lon grid) and upscaled at
the lowest temporal resolution (3-hourly interval). TMPA
has not been interpolated as it shares the same grid as
ERA5. Spatial interpolation was performed using the “con-
servative” algorithm from the xESMF python library
(Zhuang et al., 2020), which ensures the precipitation con-
servation on the coarser ERA5 grid boxes, as has been
done in previous studies (e.g., Di Luca et al., 2021; Prein &
Gobiet, 2017). The extent of the reduction in resolution
(and the associated smoothing effect) varies between the
different observations, with the finest resolution being
0.04� and the coarsest (except for 0.25�) being 0.1�.

Specifically, STAGE IV was first interpolated using a
nearest-neighbour approach from its native 4-km polar
stereographic projection to a 0.01� lat/lon grid before
being conservatively interpolated to the ERA5 grid. This
product is only considered for the northeast United States
(NEUS) and the southeast United States (SEUS) regions.

MSWEP and GSMaP grid (available at 0.1�) were first
shifted by +0.025� in latitude and longitude to ensure
that the number of input cells (2.5 cells) used to produce
an ERA5 output cell (0.25�) remains constant as this sub-
stantially affects the frequency of precipitating events
(see Figure S1). This operation was not required for the
IMERG grid as its grid was already aligned with
the ERA5 (two ERA5 grid cells contain exactly 5 IMERG

TABLE 2 Details of corrections applied to satellite-based products: dataset used as reference, correction reference, spatial (Δx) and
temporal (Δt) resolutions of the data used as reference or at which the correction is performed.

Correction dataset Correction reference Δx Δt Note

CMORPH
(over land)

CPC Unified Gauge-
Based Analysis

Xie et al. (2017) 0.5� Daily Correction of daily precipitation
and debiased of the monthly
precipitation

CMORPH
(over
ocean)

GPCP 5-day precipitation 7.5� 95 days Debiased of the mean
precipitation

GSMaP (over
land)

CPC Unified Gauge-
Based Analysis

GPM Global Rainfall Map
Algorithm Development Team
(2014) and Mega et al. (2019)

0.5� Daily Correction of hourly
precipitation and debiased of
the daily precipitationRadar rain-gauge network

of Japan (2015)
0.1� Hourly

PERSIANN GPCP monthly analysis
v2.3

Sadeghi et al. (2021) 2.5� Monthly Filtering of nonzero values
generated by the Neural
Network model.

Debiased of the monthly
precipitation

TMPA (over
land)

GPCC v6 Monitoring
analysis

Huffman et al. (2010) 1� Monthly Debiased of the monthly
precipitation

IMERG (over
land)

GPCC v6 Monitoring
analysis

Huffman et al. (2018) 1� Monthly Debiased of the monthly
precipitation

MSWEP Daily gauge data (Beck
et al., 2019b)

Beck et al. (2019b) and GloH20
(2021)

0.1 Daily Debiased of the monthly
precipitation when gauge
observations are available

PICART ET AL. 1019

 10970088, 2024, 4, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/joc.8369, W
iley O

nline L
ibrary on [01/11/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://rmets.onlinelibrary.wiley.com/action/rightsLink?doi=10.1002%2Fjoc.8369&mode=


grid cells). Due to file compression issues, ERA5 precipi-
tation estimates can contain some small negative values
(≥−10−8 mm (3 h)−1); these values were set to zero
before interpolation.

For all datasets, 3-hourly precipitation values lower
than a threshold of 0.125 mm (3 h)−1 are assumed to be
zero to assure a similar treatment of low precipitation
values. At this threshold value, the most substantial por-
tion of total precipitation that goes unaccounted for is
2.7% from the ERA5 product (refer to Table S1 for spe-
cific details). The threshold used here is consistent with
previous studies using an intensity-frequency decomposi-
tion of the mean precipitation (Catto et al., 2015; Di Luca
et al., 2021).

3.2 | Hierarchical precipitation
difference metrics

Multiple metrics are used to quantify the precipitation
difference between two products and are all calculated at
individual grid points.

The first metric, denoted as ΔPM , is the absolute value
of the difference between the time-mean precipitation of
two given products (i.e., the absolute bias). At a grid
point, the mean precipitation, PM , is given by

PM=
1
NT

X

t

Pt, ð1Þ

where the index t stands for the 3-hourly time interval,
NT the total number of intervals and Pt the 3-hourly pre-
cipitation time series. Figure S2 shows the mean precipi-
tation maps of each product. The metric ΔPM between
two given datasets, noted by superscripts (1) and (2) here-
inafter, is thus given by

ΔPM=
1
NT

X
t
P 1ð Þ
t −P 2ð Þ

t

� ����
���= P 1ð Þ

M −P 2ð Þ
M

���
��� : ð2Þ

Note that given eight datasets, a total of 28 distinct
pairs (and thus comparisons) are possible, 8!= 2!×6!ð Þ:

The second and third metrics quantify differences in
the precipitation variability. The second metric quantifies
differences in the intensity distribution. For a given
choice of intensity bins, the total precipitation PBj within
the bin Bj= Ij,Ij+1

� �
is given by

PBj =
X

Ij<Pt≤Ij+1

Pt: ð3Þ

A novel precipitation metric ΔPB can be defined as

ΔPB=
1
NT

X
Bj
P 1ð Þ
Bj

−P 2ð Þ
Bj

���
���: ð4Þ

The ΔPB metric is useful to identify differences
between products that arise from differences in the inten-
sity distribution. As such, it provides a stricter estimation
of differences between two products compared with ΔPM

(that allows for all types of error compensations) verifies
that ΔPB≥ΔPM .

The choice of bins Bj must be made with care. It must
span the range of all possible intensities. Also, the bin num-
ber must be chosen to ensure a sufficiently low noise
(which increases with the bin number) and a precise repre-
sentation of the intensity distributions. In our study, a loga-
rithmic distribution with 130 bins was used when analysing
the entire period, with the lowest intensity being 0.125mm
(3h)−1 and the highest being 103 mm (3 h)−1. When calcu-
lations are made at the monthly and seasonal basis
(hence with fewer data), we used 20 bins ranging from
0.125mm (3 h)−1 to 103 mm (3 h)−1. Figure S3 shows the
dependence of ΔPB values on the number of bins.

A third metric is based on the commonly used intensity-
frequency precipitation decomposition (e.g., Catto et al., 2015;
Di Luca et al., 2021). At a grid point, the mean precipitation
is given by

PM=

P
t
Pt

NT
=

P
t
Pt

NPt>0
:
NPt>0

NT
=I:F, ð5Þ

with NPt>0 the number of 3-hourly periods with precipita-
tion, I the mean intensity, which is the precipitation
averaged over all 3-hourly periods with precipitation, and
F the precipitation frequency, which is the fraction of
3-hourly periods with precipitation. The mean precipita-
tion used here is the same as in Equation (1). Figure S4
shows the frequency maps of each product.

The intensity-frequency metric ΔPIF is defined as

ΔPIF= i: ΔFj j+ f : ΔIj j+R, ð6Þ

with

i=min I 1ð Þ, I 2ð Þ
� �

, f =min F 1ð Þ,F 2ð Þ
� �

, ð7Þ

ΔF=F 1ð Þ−F 2ð Þ,ΔI=I 1ð Þ− I 2ð Þ, ð8Þ

R= I 1ð Þ− i
� �

: F 1ð Þ− f
� �

− I 2ð Þ− i
� �

: F 2ð Þ− f
� ����

���: ð9Þ

The terms i: ΔFj j and f : ΔIj j measure differences in
mean precipitation amounts of two products due to the

1020 PICART ET AL.

 10970088, 2024, 4, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/joc.8369, W
iley O

nline L
ibrary on [01/11/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://rmets.onlinelibrary.wiley.com/action/rightsLink?doi=10.1002%2Fjoc.8369&mode=


difference in the frequency and the intensity of precipita-
tion, respectively. The metric ΔPIF is constructed to high-
light compensations between the intensity and frequency
terms within ΔPM . In case of a compensation between
the frequency and the intensity, the differences
I 1ð Þ−I 2ð Þ� �

and F 1ð Þ−F 2ð Þ� �
have opposite signs (i.e., the

product with the highest frequency also has the lowest
intensity) and the residual term R=0 adding to
ΔPIF= i: ΔFj j+ f : ΔIj j. Otherwise, if no compensation
occurs, R>0 and ΔPIF=ΔPM . By construction ΔPIF≥ΔPM .

The fourth metric, denoted as ΔPA, is the time-
average of absolute differences between 3-hourly precipi-
tation values (i.e., the mean absolute difference),

ΔPA=
1
NT

X
t
P 1ð Þ
t −P 2ð Þ

t

���
���: ð10Þ

This metric is null only if the two precipitation time
series are identical, thus preventing any form of error com-
pensation. ΔPA will be used as a reference in our analysis.
In contrast to ΔPM , ΔPB and ΔPIF , this metric is most
meaningful when the timing of meteorological events
coincides between the two datasets (e.g., it cannot be
used to evaluate differences between free running climate
model simulations). By construction, ΔPA≥ΔPB≥ΔPM

but ΔPA is not necessarily greater in values than ΔPIF .
To illustrate differences between the four metrics,

Figure 2a shows TMPA and MSWEP precipitation time
series for the grid point closest to Montreal, Canada, for
2015. At this grid point and for this period, the compari-
son between TMPA and MSWEP has a value of 0.01 mm
(3 h)−1 for ΔPM and of 0.47mm (3 h)−1 for ΔPA.
Figure 2b shows the intensity distributions of TMPA and
MSWEP for 2015. In this case, the metric ΔPB has a value
of 0.35mm (3 h)−1 and the metric ΔPIF has a value of
0.51mm (3 h)−1. This confirms that the various metrics

allow for different levels of compensation among their
discrepancies with a large part of discrepancies cancelling
out when using ΔPM and no cancellation at all for the
ΔPA metric.

All metrics have units of precipitation rate, mm
(3 h)−1. To better reflect local differences, the relative dif-
ference is calculated by normalizing a given metric, ΔP,
by the sum of mean precipitation in both products:

ΔP %ð Þ=100×
ΔP mm 3hð Þ−1� �

P 1ð Þ
M +P 2ð Þ

M

: ð11Þ

Defined in this way, relative metrics vary between 0%
and 100% and show the fraction of the mean precipita-
tion that is not consistent between two products. For
example, using the 3-hourly precipitation time series for
the year 2015 shown in Figure 2a, the relative differences
between MSWEP and TMPA are ΔPM=1:7%, ΔPB=50%,
ΔPIF=73% and ΔPA=68%.

4 | RESULTS

4.1 | Constructing an uncertainty metric

In this section, we derive a metric to quantify the uncer-
tainty of a set of products associated with the representa-
tion of precipitation at an individual grid point. The
process of deriving the uncertainty metric is illustrated
using the precipitation time series from three locations
for specific seasons.

Figure 3a,b shows boxplots of differences between
each product with the other seven products for ΔPM and
ΔPA in winter for a grid point located in central Maine.
ΔPM values vary from 0.3% for the IMERG-STAGE IV

FIGURE 2 TMPA and MSWEP 3-hourly precipitation rates (Pt , panel a) and total precipitation accumulated over different bins (PB;

panel b). Both figures are based on data from the year 2015 and for a grid point located near Montreal, Canada (45.5�N, 73.5�W). The

intensity distribution is represented using 20 logarithmic bins. [Colour figure can be viewed at wileyonlinelibrary.com]
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pair to 72% for the CMORPH-PERSIANN pair and ΔPA

values vary from 16% for the MSWEP-ERA5 pair to 90%
for the CMORPH-TMPA pair. CMORPH shows median
values for ΔPM and ΔPA of 64% and 82%, respectively,
that are much larger than for other products which have
median values for ΔPM between 6.5% (ERA5) and 13.2%
(MSWEP) and for ΔPA between 62% (STAGE IV) and
71% (PERSIANN). The much larger median value for
CMORPH results from large errors in CMORPH precipi-
tation associated with a general underestimation of
precipitation in winter high latitudes, an issue that has
been shown in several studies (e.g., Sun et al., 2018;

Xie et al., 2017). The observational uncertainty in the
central Maine location could be characterized using the
largest difference among all products, in Figure 3a
denoted as σall. However, σall is determined by the differ-
ence between CMORPH and PERSIANN and is thus con-
tingent on the erroneous value of the CMORPH product,
leading to an overestimation of the actual uncertainty.

The example above shows that the estimation of the
observational uncertainty can be improved if we can
remove outliers from the uncertainty calculation. To
identify outliers, we assume that the majority of precipita-
tion products are distributed around the true precipitation

FIGURE 3 Difference values calculated for the absolute bias (ΔPM , left panels) and the mean absolute difference (ΔPA, right panels)

using 3-hourly precipitation time series from three grid points: central Maine (46.0�N, 68.5�W) in winter (a, b), Florida (30.7�N, 85.5�W) in

winter (c, d) and Gulf of Mexico (27.0�N, 90.0�W) in summer (e, f). The dashed line indicates the nbobs−1ð Þth largest difference value. The
uncertainty metrics, σall and σsel, are defined in section 3.2. [Colour figure can be viewed at wileyonlinelibrary.com]
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and that products with large median differences, the out-
liers, are therefore wrong. In this study, outliers are identi-
fied as those products for which the median value is larger
than the (nobs−1) largest individual metric value. That is,
in the case where eight products are available, a product
will be considered as an outlier only if its median value is
larger than or equal to the seventh largest individual
value (denoted with the dashed line in Figure 3a).
According to this definition, a product will be identified
as an outlier if it differs substantially from most products
and no more than two products will be identified.
Finally, the observational uncertainty is estimated as the
largest value among the products that were not identified
as outliers and is denoted as σsel (i.e., the observational
uncertainty of selected products).

In winter for the central Maine location (Figure 3a,b),
CMORPH median is larger than the seventh largest
values for both ΔPM and ΔPA metrics, respectively, 65%
and 82% and is correctly identified as an outlier. The
observational uncertainty decreases from 72% (σall) to
24% (σsel) for ΔPM and from 90% to 72% for ΔPA.

The identification of outliers, as conducted here, can
be affected by the interdependence between products. If
multiple products are dependent, the assumption that the
majority of products are distributed around the true value
becomes problematic. In such instances, the identi-
fied outliers could actually be products that are closer
to the truth. That is, in instances where there is a
strong dependence among most products, our method
might fail to properly identify outliers. In our case, a
small ΔP value between two datasets suggests a high
level of agreement and can be related with products
being dependent on each other. For example, the low
ΔPA value between MSWEP, ERA5 and STAGE IV
likely reflects that MSWEP was constructed using
ERA5 precipitation estimates and that ERA5 assimi-
lated radar measurements on which STAGE IV is based
(see section 2). However, the medians for MSWEP,
ERA5 and STAGE IV are similar to those of the other
products, indicating that the median value is mini-
mally influenced by product dependence. This assump-
tion is only true if co-dependent products account for
less than half of all products.

Figure 3c,d shows boxplots of ΔPM and ΔPA values
during winter in a grid point in Florida. The ΔPM ERA5
median of 14% is much larger than the median of any
other product, all under 5% and seventh largest value,
9%. For ΔPM , ERA5 is considered as an outlier. For ΔPA,
ERA5 and PERSIANN have relatively high median
values, respectively, 60% and 58%, in comparison to other
medians (under 50%). ERA5 and PERSIANN medians are
greater or equal the seventh largest value, thus, they both
products are considered as outliers. The observational

uncertainty σsel decreases compared with σall from 15% to
7% for ΔPM and from 75% to 55% for ΔPA.

Figure 3e,f shows boxplots of ΔPM and ΔPA values
during summer in a grid point in the Gulf of Mexico. For
ΔPM , products can be divided into two groups of products
between which the comparisons have low values: on one
side, IMERG, TMPA and PERSIANN and on the other
side, MSWEP, GSMaP, ERA5 and CMORPH. Products all
have medians under the seventh largest value, 15%, and
none is excluded. For ΔPA, ERA5 has the largest median,
60%, which is higher than the seventh largest value, 57%,
and is considered as an outlier. The observational uncer-
tainty remains unchanged for ΔPM and decreases from
68% to 60% for ΔPA.

4.2 | The products uncertainty and the
difference metrics

Figure 4 shows the monthly median for the eight precipi-
tation products and the four metrics averaged over the
NEUS region. Figure 4a shows that, for the metric ΔPM ,
the median of the CMORPH product is much higher than
any other product from October to May, reaching a value
of nearly 60% in February. Products other than CMORPH
exhibit a median that varies from about 15% in winter to
less than 10% in summer. Interestingly, the σsel values
are also larger in winter than in summer, which shows
that the larger observational uncertainty in mean precipi-
tation in winter does not only result from including
CMORPH but is a consistent feature among selected
products.

Figure 4b,c shows that results for ΔPB and ΔPIF dis-
play strong similarities and values are systematically
higher than for ΔPM . The large disparity between
CMORPH and other products in winter remains but, in
addition, ΔPB and ΔPIF also reveal that TMPA estimates
are substantially different compared to the other products
year-round. While TMPA shows differences in mean pre-
cipitation of at most 15%, like other products, it shows
differences of about 50% and 70% for ΔPB and ΔPIF ,
respectively. This suggests that the intensity and fre-
quency distribution of 3-hourly precipitation of TMPA is
at odds with other products. For both metrics, the
median of GSMaP also appears to be slightly higher than
other products in winter while ERA5 median tends to be
slightly higher than others in summer.

Figure 4d shows that the ΔPA metric captures some
additional disparities between products and shows larger
values than ΔPM and ΔPB. PERSIANN shows low values
of ΔPM , ΔPB and ΔPIF , but its median is as large as the
one from TMPA for the ΔPA metric showing its timing of
precipitation is at odds with other products. ERA5 has
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the largest ΔPA median values in summer months, with a
maximum value of 67% in July. This last result might be
related with some known issues of ERA5 at representing
the timing of precipitation during the day (Watters
et al., 2021). It is also consistent with the literature show-
ing that the more the precipitation regime tends towards
deep convection, the more accurate the satellite estimates
and the less accurate the model-based estimates (e.g., Ebert
et al., 2007). TMPA has a high ΔPA value throughout the
year, with a mean annual value of around 66%.

Figure 5 shows the mean precipitation and precipita-
tion frequency for each product and for each season. As
presented in Equation (5), the mean precipitation, PM ,
can be expressed as the product of the precipitation fre-
quency, F, and mean intensity, I (grey lines in Figure 5
show values of constant mean intensity). TMPA shows a
mean precipitation like most other products and ΔPM

values for comparison with TMPA are small, so the same
applies to its median. However, TMPA systematically
generates fewer precipitation events with a higher inten-
sity than other products, its mean intensity is near 5mm
(3 h)−1 while other products have intensities below 3mm
(3 h)−1. Comparisons with TMPA for ΔPB and ΔPIF are
thus large in values, as its median. In both winter and
spring, CMORPH tends to underestimate the mean pre-
cipitation largely due to an underestimation of the fre-
quency of events.

Figure 6 shows the fraction of grid points where each
product is considered as an outlier by our method over
NEUS, for the four metrics. The sum of all fractions can
exceed 100% because two products can be considered as out-
liers at some points. For the ΔPM metric, Figure 6a shows
that CMORPH is considered as an outlier for around 90%
of the grid points in January and February. From April to
October, PERSIANN and ERA5 have the largest monthly
fractions with values between 20% and 35%.

Figure 6b,c shows that results based on ΔPB and ΔPIF

share some strong similarities. In winter, CMORPH and
TMPA are identified as outliers at 75% and 36% of grid
points, respectively, for ΔPB. TMPA is also excluded at
most points for the rest of the year. These results are con-
sistent with Figure 4. CMORPH has a higher median in
winter, due to its underestimation of average precipita-
tion, and TMPA throughout the year, due to its poor rep-
resentation of precipitation variability. Interestingly, in
summer, ERA5 and PERSIANN are considered outliers
at 28% and 15% of grid points for ΔPB and 15% and 3%
for ΔPIF , while their medians (Figure 4) are only slightly
higher than the others. The spatial variability of the
median within NEUS could explain this result.

Figure 6d shows that for the ΔPA metric, only
CMORPH, TMPA, ERA5 and PERSIANN are considered
as outliers. CMORPH is excluded for winter and early
spring months with a maximum of 70% in January, while

FIGURE 4 Monthly median for each product for each metric: the absolute bias (ΔPM , a), the difference in the intensity distribution

(ΔPB, b), the difference in the used intensity-frequency precipitation decomposition (ΔPIF , c) and the mean absolute difference (ΔPA, d)

averaged over grid points in the NEUS region. Monthly mean values for the σall and σsel uncertainty metrics are also included. [Colour figure

can be viewed at wileyonlinelibrary.com]
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ERA5 is excluded mainly for summer months with a
maximum of 80% in July. TMPA and PERSIANN are con-
sidered as outliers by at least 20% of the grid points all
year long, TMPA fraction reaches a maximum of 66% in
May and PERSIANN of 86% in October. These results are
consistent with Figure 4.

4.3 | The regional variability of products
uncertainty

Figure 7a shows the spatial distribution of σsel values for
the ΔPA metric over eastern North America. A strong
spatial variability is visible across the domain, with high
latitudes showing the largest uncertainty values. Over
NCA, σsel has a regional mean value of 76%, reaching
95% locally. The uncertainty over US regions is lower
than for Canadian regions (CAGL and NCA), with
regional mean values of 62% and 66% for SEUS and
NEUS, respectively. Further work is needed to quantify
uncertainty sources in both regions, but differences are
likely related with the lower density of stations (Kidd
et al., 2017; Sun et al., 2018) over Canada that will affect

precipitation corrections, or errors in satellite retrieval
algorithms when representing precipitation in snow-
covered areas (Henn et al., 2018; Trenberth et al., 2017).
AO and GM have regional mean σsel values of about 62%,
thus showing similar values to those over land.

Figure 7b–g shows the fraction of grid points where
each product is identified as an outlier for individual
regions on an annual basis. The products identified as
outliers over the studied domain are predominantly PER-
SIANN (58% of domain grid points), ERA5 (34%) and
TMPA (16%). Specifically, PERSIANN is excluded at 43%,
33% and 96% of grid points over NEUS, CAGL and NCA,
respectively. Figure S5 shows that over SEUS, NEUS and
AO, PERSIANN is excluded for along the east coast.
ERA5 is identified as an outlier at 43%, 66%, 96% and 45%
for NEUS, SEUS, GM and AO, respectively. Figure S5
shows that ERA5 is identified as an outlier at most grid
points with latitudes lower than 35�N and points with
longitudes between 100�W and 90�W over US land. The
result may be explained by the poor representation of
convective precipitation in ERA5 (Lavers et al., 2022).
Finally, TMPA is excluded at 30% and 35% of grid points
over NEUS and CAGL, mostly for grid points surrounding

FIGURE 5 Mean precipitation, PM , as a function of frequency of precipitation events, F, for each product for (a) DJF, (b) MAM, (c) JJA

and (d) SON. Results are for an area comprising the two regions NEUS and SEUS. Lines with constant precipitation intensity (I) are shown

in black (see Equation (6)). [Colour figure can be viewed at wileyonlinelibrary.com]
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the Great Lakes (Figure S5). GSMaP and CMORPH are
also excluded for a small number of grid points (<13%)
over CAGL and NCA.

Figure 8a shows the spatial distribution of σsel ΔPBð Þ.
The uncertainty for ΔPB is lower than for ΔPA. The low-
est values are found over SEUS and NEUS, with an aver-
aged uncertainty of 25% and 28%, and largest ones are
found over NCA with an average value of 44%. A discon-
tinuity in σsel ΔPBð Þ is generally observed between
United States and Canada and between land and Great
Lakes grid points, likely due to the difference in station
density (Kidd et al., 2017; Sun et al., 2018), which
strongly affects product's corrections. Northern regions
(NCA and CAGL) and ocean regions (GM and AO) show
similar regional mean uncertainty values, between 40%
and 45%, but their spatial distributions differ widely.
Over AO and GM, σsel ΔPBð Þ values vary between 15%
and 57% while over NCA and CAGL grid point values
vary between 17% and 83%.

Figure 8b–g shows the fraction of grid points for
which each product is excluded within σsel ΔPBð Þ. The
fraction of points where PERSIANN is excluded
decreases drastically in comparison to results using the
ΔPA metric, which is consistent with previous results
(Figure 6). TMPA is identified as an outlier at most grid
points over SEUS, NEUS and CAGL and at grid points

over the northern part of AO. Over ocean, MSWEP,
ERA5 and TMPA are identified as an outlier. MSWEP is
excluded at most ocean grid points south of 30�N latitude
(not shown). Over oceanic, ERA5 and MSWEP intensity
distributions are very similar and both products strongly
underestimate precipitation intensities compared with
the other products (not shown). MSWEP, combining
ERA5 and IMERG, exhibits a distribution more distant
from other products than ERA5. This difference could be
due to its specific merging technique, or the wet day bias
correction applied to ERA5.

On the contrary, CMORPH and GSMaP are identified
as outliers only at grid points in the northern part of the
domain. GSMaP is excluded for ΔPB and ΔPA for areas
where GSMaP strongly underestimates the mean precipi-
tation (Figure S2). GSMaP is mainly excluded in regions
with strong and unrealistic spatial discontinuities in its
precipitation and mean frequency fields (Figures S2 and
S4, respectively).

4.4 | The seasonal variability of products
uncertainty

Figure 9a shows monthly mean values of σsel ΔPAð Þ aver-
aged over each individual region. For high-latitude

FIGURE 6 Fraction of grid points for which each product is identified as an outlier for each month of the year over the NEUS. Results

are shown for the absolute bias (ΔPM , a), the difference in the intensity distribution (ΔPB, b), the difference in the used intensity-frequency

precipitation decomposition (ΔPIF , c) and the mean absolute difference (ΔPA, d). [Colour figure can be viewed at wileyonlinelibrary.com]
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regions (NCA, CAGL and NEUS), the uncertainty is
larger in winter than in summer. For example, NCA
has a mean uncertainty of 90% in winter and around
70% in summer. This difference may be explained by
the presence of snow on the surface and the larger
uncertainty in precipitation gauge observations
(e.g., wind-induced undercatch of snowfall). For low-
latitude regions (SEUS, GM and AO), the uncertainty
varies little throughout the year, with a small maxi-
mum in summer. The increase in uncertainty in sum-
mer is probably related with the predominance of
convective precipitation that is associated with high
spatial and temporal variability (Beck et al., 2017b;
Prein & Gobiet, 2017) and with the increased presence
of cirrus clouds that may be mistaken for raining
clouds (Tian et al., 2009).

Figure 9b–e shows that the fraction of grid points
where products are excluded varies strongly between
summer (red bars) and winter (blue bars). For northern
regions (Figure 9b–d), CMORPH is excluded for most
grid points in winter but only a few in summer. On the
contrary, the fraction of grid points where ERA5 is

identified as an outlier is higher in summer (e.g., 95% in
SEUS) than in winter (e.g., 6% in SEUS) for all regions.
PERSIANN is excluded for most grid points when
CMORPH and ERA5 are not considered as outliers. As
shown by Figures 4 and 6 for NEUS, PERSIANN tends to
be consistently distant from the other product year-round
and for most grid points.

Figure 10a shows that, for ΔPB, the uncertainty
remains higher in winter than in summer for high lati-
tudes (NEUS, CAGL and NCA). For instance, for NCA,
the uncertainty reaches a maximum of 72% in January
and a minimum of 41% in July. For ΔPB, the largest
uncertainties in GM occur in spring with a maximum of
57% in May. The large uncertainty is the spring is caused
by large disparities in the estimation of the mean pre-
cipitation. Figure 10b–g shows the fraction of grid
points where each product is identified as an outlier in
each region. The main difference between results for
ΔPB and ΔPA is that PERSIANN is rarely identified as an
outlier for ΔPB, except over NCA in summer where PER-
SIANN tends to overestimate precipitation intensities
(not shown).

FIGURE 7 Spatial distribution of the σsel uncertainty metric (a), and the fraction of grid points where each product is identified as an

outlier for individual regions (b–g). All metrics are computed using the mean absolute difference, ΔPA. [Colour figure can be viewed at

wileyonlinelibrary.com]
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4.5 | The sensitivity of products
uncertainty to the choice of temporal and
spatial resolutions

So far, the analysis was carried out using precipitation
data available every 3 h over a common regular 0.25�

latitude–longitude grid. For some applications, we might
be interested on knowing the precipitation uncertainty
based on data at different temporal and spatial scales.
The sensitivity of the uncertainty to the spatiotemporal
resolution of the data is assessed here by considering dif-
ferent temporal (3, 6 and 24 h) and spatial (0.25� and
0.75�) resolutions. Decreasing the temporal or spatial res-
olution implies a decrease in the number of samples and
thus the number of bins in the calculation of ΔPB needs
to be adjusted. Here, 20 bins are used for all resolutions
to ensure the comparability of the results.

Figure 11 shows the σsel observational uncertainty for
each region and for each of the four metrics. As expected,
the observational uncertainty measured with ΔPM does
not depend on the temporal or spatial resolution of the
data. For ΔPB, ΔPIF and ΔPA, a decrease in the temporal
or the spatial resolution of the data leads to substantial

decreases in the observational uncertainty in all regions. For
instance, Figure 11c shows that the ΔPA uncertainty
decreases from 73% for 3-hourly data to 54% for daily data
for a spatial resolution of 0.25� over CAGL. For most
regions, the resolutions 0.25�/6-hourly and 0.75�/3-hourly
have similar averaged uncertainties. It is however impor-
tant to note that locally, a decrease of temporal or spatial
resolution does not necessary lead to a decrease in the
overall uncertainty for ΔPIF and ΔPB.

5 | DISCUSSION AND
CONCLUSIONS

A methodology was presented to quantify the observa-
tional uncertainty among a set of eight high-resolution
gridded precipitation datasets and to identify, at individual
grid points, the products that are most likely to be outliers.
At each grid point, the uncertainty is then estimated as the
largest precipitation difference among products excluding
the outliers, thus avoiding the overestimation of uncer-
tainty arising from erroneous or unrealistic products. Four
metrics were used to quantify several aspects of the

FIGURE 8 As in Figure 7 but using the difference in the intensity distribution, ΔPB. [Colour figure can be viewed at

wileyonlinelibrary.com]
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precipitation time series in a hierarchical way: from the
simple total accumulation (denoted as ΔPM), to the vari-
ability of precipitation by looking at the intensity and fre-
quency (ΔPIF) or the intensity distribution (ΔPB), to the
inclusion of the chronology (i.e., timing) of events (ΔPA).
The different metrics can be viewed as allowing varying
degrees of error compensation, with the long-term mean
difference (ΔPM) allowing for complete compensation of
errors, the sum of 3-hourly absolute differences (ΔPA)
permitting no compensation, and the two other metrics
(ΔPB and ΔPIF) allowing for partial compensation of
errors.

The newly introduced measure of observational
uncertainty, which exclude outliers, yields substantially
lower values compared to a conventional measure of
uncertainty that is based on all products, sometime lead-
ing to reductions as large as 50%. For example, the obser-
vational uncertainty decreases in winter over NCA from
95% to 48% for mean precipitation ΔPM , from 97% to 70%
for the intensity distribution ΔPB and from 99% to 90%
for the precipitation absolute differences ΔPA. It should

be noted, however, that the identification of outliers is a
non-trivial task, particularly in the absence of a high-
resolution precipitation product that can be used as a ref-
erence. According to our method, outliers are identified
as products which are notably different from most others,
based on a statistical description of differences between
all products. That is, the method assumes that a product
that is far from most is an outlier and as such is likely to
be wrong. However, there may be such a case that a
product identified as outlier is closer to the “truth” than
other products. Indeed, as Knutti (2010) and Knutti et al.
(2017) have argued regarding the selection of climate
models from an ensemble, this assumption can present
challenges when the products comprising the ensemble
exhibit high dependency. While the precipitation prod-
ucts considered are constructed using a variety of instru-
ments and methodologies, including different corrections
from in situ datasets, it is evident that there are depen-
dencies among them. This is clearly observed with
MSWEP precipitation estimates which are directly
derived from IMERG and ERA5 precipitation estimates.

FIGURE 9 Annual cycle of the σsel uncertainty metric for each region (a) and fraction of grid points where each product is identified as

an outlier in summer (red bar) and winter (blue bar) for all six individual regions (b–g). All metrics are computed using the mean absolute

difference, ΔPA. [Colour figure can be viewed at wileyonlinelibrary.com]
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Our findings demonstrate numerous cases where
products were identified as outliers, in line with the out-
comes and conclusions of earlier studies. This consistency
bolsters our confidence in the results:

• CMORPH v1.0 in winter over northern regions for all
metrics. The poor performance of CMORPH in cold-
season high-latitude has been discussed in detail by
Xie et al. (2017).

• ERA5 in summer over southern regions for the pre-
cipitation absolute differences ΔPA metric. This
result is likely related with the poor representation
of convective precipitation in ERA5 (Gomis-Cebolla
et al., 2023; Lavers et al., 2022; Xin et al., 2021),
including the representation of the diurnal cycle
(Watters et al., 2021).

• TMPA 3B42 in most regions and seasons for all metrics
(ΔPB, ΔPIF and ΔPA) but the long-term mean differ-
ence (ΔPM). The poor performance of TMPA at repre-
senting the frequency and intensity of precipitating
events is in agreement with findings in other studies
such as Gehne et al. (2016) and Sun et al. (2018).

• GSMaP v7 in winter over Canada for all metrics. At
high latitudes, GSMaP misses precipitation events due
to the presence of snow, which leads to an underesti-
mation of the mean precipitation (Tian et al., 2010;
Wang & Yong, 2020).

• PERSIANN CCS-CDR over Canada for the intensity
distribution difference metric (ΔPB). For northern lati-
tudes, PERSIANN overestimates the intensity of pre-
cipitation compared to other products. This issue have
been documented for other versions of the products
(Nguyen et al., 2018; Sadeghi et al., 2021).

In addition, our approach identifies additional out-
liers that cannot be directly associated to findings in pre-
vious studies:

• MSWEP v2.8 and ERA5 over ocean for the intensity
distribution difference metric (ΔPB). Both MSWEP and
ERA5 underestimate precipitation intensities when
compared to other products including IMERG which
has been shown to underestimate precipitation intensi-
ties along the US coast (Derin et al., 2022). We can

FIGURE 10 As in Figure 9 but using the difference in the intensity distribution, ΔPB. [Colour figure can be viewed at

wileyonlinelibrary.com]
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thus assume that, at least for this region, they are fur-
ther from the truth than others.

• PERSIANN CCS-CDR for most regions for the precipi-
tation absolute difference metric (ΔPA). PERSIANN
shows similar mean precipitation and an intensity-
frequency distribution to other products with low
values of ΔPM , ΔPB and ΔPIF . However, the chronol-
ogy of precipitation events differs substantially
between PERSIANN and other products, leading to
high values of ΔPA. We are not aware of other litera-
ture showing this issue.

IMERG v6 and STAGE IV are not systematically iden-
tified as outliers in any region or season. While this does
not necessarily imply that these two datasets are the best,
it does show that both datasets are rarely very different
from most others.

Results show that the choice of the metric leads to
very large differences in the observational uncertainty
values. For example, the uncertainty in the absolute bias
(ΔPM) is generally within 20% while it can attain 90%
when considering the time-average of absolute differ-
ences of 3-hourly precipitation (ΔPA). This shows that
metrics capture disparities in different characteristics of
precipitation time series and that the choice of the metric
needs to be carefully considered according to the aim of
the study. In this study, the absolute difference, ΔPA, is

often used as a reference because it captures all dispar-
ities between products but its use as the main metric
would be unwise whenever the chronology of precipita-
tion events is not a key aspect to consider, such as for cli-
mate model evaluation (Ashouri et al., 2015; Beck
et al., 2017b). For the same reason, if a study focuses on
monthly mean precipitation, there might be no need to
eliminate a product simply because it poorly represents
the variability in 3-hourly precipitation. While it is diffi-
cult to provide general guidelines about the use of the
products considered in our analysis, we believe that our
results can inform the selection of specific products
depending on the application at hand (i.e., for a given
region, season, and quantity of interest).

Our results show that the observational uncertainty
and the outlier identification exhibit strong regional and
seasonal variations. The uncertainty obtained from the
annual analysis does not accurately reflect the seasonal
uncertainty, especially for northern regions. For the NCA
region, the precipitation absolute difference metric (ΔPA)
annual uncertainty is 76% rising to as much as 90% in
winter. The same applies to the identification of outliers
and products identified as outliers according to the
annual analysis are generally not identified as outliers for
the seasonal analysis. For example, for NCA, the annual
analysis identifies PERSIANN as an outlier while the
winter season analysis shows that CMORPH is the main

FIGURE 11 Regional mean (a–f) observational uncertainty, σsel, estimated using data with different spatiotemporal resolutions for each

difference metric: the absolute bias (ΔPM), the difference in the intensity distribution (ΔPB), the difference in the used intensity-frequency

precipitation decomposition (ΔPIF ) and the mean absolute difference (ΔPA). [Colour figure can be viewed at wileyonlinelibrary.com]
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outlier. It is also important to note that for most regions,
notably regions with few direct observations, such as
Canada or the oceans, the uncertainty is generally large,
and the use of different product types seems unavoidable.
In this case, our method is particularly relevant by iden-
tify products that should not be used.

Our results also show that the observational uncer-
tainty decreases substantially for all metrics, except the
mean precipitation difference ΔPM , as the horizontal or
the temporal resolution of the data decreases. This is
expected and related with the smoothing effect of
decreasing the resolution (Nitu et al., 2018; Norris
et al., 2019; Trenberth et al., 2017; Trenberth &
Zhang, 2018). For instance, a change in the temporal res-
olution from 3h to 1 day decreases the uncertainty by a
quarter for northern Canada and by almost half for
southeast United States for ΔPA. However, lowering the
resolution not only reduces the uncertainty (which can
be seen as a way to reach more practical values for a
given application), but also the information within
datasets.

Considering the growing availability of precipitation
products with high spatiotemporal resolution, further
research is required to determine how to best estimate
precipitation values and their associated observational
uncertainty. In particular, future methods need to explic-
itly address the presence of highly interdependent precip-
itation products within the ensemble. In addition, it
would be valuable to take advantage of the broader avail-
ability of subdaily in situ observations (e.g., Collet
et al., 2022; Smith et al., 2011) to continue improving pre-
cipitation products.
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