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Abstract: The Australian Alps are the highest mountain range in Australia, which are important for
biodiversity, energy generation and winter tourism. Significant increases in temperature in the past
decades has had a huge impact on biodiversity and ecosystem in this region. In this study, observed
temperature is used to assess how temperature changed over the Australian Alps and surrounding
areas. We also use outputs from two generations of NARCliM (NSW and Australian Regional Climate
Modelling) to investigate spatial and temporal variation of future changes in temperature and its
extremes. The results show temperature increases faster for the Australian Alps than the surrounding
areas, with clear spatial and temporal variation. The changes in temperature and its extremes are
found to be strongly correlated with changes in albedo, which suggests faster warming in cool season
might be dominated by decrease in albedo resulting from future changes in natural snowfall and
snowpack. The warming induced reduction in future snow cover in the Australian Alps will have a
significant impact on this region.

Keywords: NARCliM; ensemble mean; future temperature projection; temperature extremes;
Australian Alps

1. Introduction

The Australian Alps are the highest mountain range in Australia. The range straddles
the borders of eastern Victoria, south-eastern New South Wales, and the Australian Capital
Territory (Figure 1). The Alpine region contains Australia’s only peaks exceeding 2000 m in
elevation and is the only region in Australian mainland to have annual deep snow, which
is important for ecosystem, biodiversity, energy generation and winter tourism.

The Australian Alpine region contains unique Australian ecosystems and iconic
species. Australia’s alpine fauna is highly vulnerable to climate change [1]. The mountain
pygmy-possum, which is an iconic species, may completely lost their bioclimatic range with
a temperature rise of only 1 ◦C accompanied by a 5% reduction in winter precipitation [2].
Some unique alpine vegetation communities such as short alpine herbfield and snowbank
feldmark are also likely to experience distribution changes in the warming climate [3].
The Australian Alps are also important as a winter drainage basin for the Murray, Mur-
rumbidgee, and Snowy River systems. The Snowy Mountains Hydroelectric Scheme, which
is a major hydro-energy producer in Australia, artificially collects and diverts runoff from
rainfall and snowmelt into the Murray and Murrumbidgee Rivers to generate electricity
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and provide water resource for the Murray-Darling Basin, which is Australia’s main region
for irrigated agriculture. Australia’s major downhill ski resorts are all located in this region.
The snow industry is one of the biggest employers in regional Australia, which is important
in improving employment outcomes for residents of these regions [4].

Figure 1. Locations of Australian Alps. The blue rectangle area is the domain to analyse differences
between high and low elevations. The red rectangle area denotes the domain to show spatial
distribution of future changes in temperature and its extremes.

Due to relatively low elevations and their latitudinal location, the Australian Alps
snow fields are particularly vulnerable to climate change. Brown and Mote [5] identified
that mean air temperature over Australian Alps fall within the range of −5 to 5 ◦C in winter,
which has high sensitivity to global warming. Thompson [6] stated, “the Australian Alps
are likely to be amongst the first alpine areas in the Southern Hemisphere where the effects
of climatic change will be observed”. Data collected from in situ monitoring sites [7–10]
and satellite remote sensing [11,12] have shown the impact of warming in these regions.
Several recent studies have investigated the impact of future global warming on snow in
the Australia Alps [8,12]. All these studies use Global Climate Model (GCM) simulations
to assess climate change in Australian Alps despite the coarse resolution of GCMs cannot
capture main characteristics of the alpine region. While GCMs are widely used in large scale
climate projections, assessing regional and local changes in temperature and its extremes
require finer spatial resolutions and sometimes more processes (e.g., convective storms).
Dynamical and statistical downscaling are typically used to bridge the resolution gap and
produce high resolution regional climate simulations.

The NSW and Australian Regional Climate Modelling (NARCliM) project is designed
to provide plausible future climate conditions for southeast Australia [13]. The first genera-
tion of NARCliM (N1.0) was delivered in 2014. A number of studies have evaluated the
N1.0 historical simulations [14,15] and shown that N1.0 can simulate observed climate well,
even if most of simulations have wet and cold biases. Other studies have also confirmed
that N1.0 simulations are better than their driving GCMs in simulating precipitation and
temperatures [16]. Since, N1.0 was made available, it has been widely used as a critical
data input for climate impact studies, such as assessing changes in rainfall extremes [17,18],
extra-tropical low pressure systems [19–21], fire-weather and fuel load projections [22–24],
near surface winds [25], vertical temperature profiles and temperature inversion [26,27],
quantifying the impact of urban expansion on local temperature extreme [28,29], assess-
ing future changes in cropping [30–32], hydrological impact and wet/dry spells [33] and
natural hazards [34].

Whilst the N1.0 simulations are successfully used in many applications, some limita-
tions in the N1.0 experimental design are identified such as older phases of CMIP (Coupled
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Model Intercomparison Project) GCMs (i.e., CMIP3), non-continuous simulations for three
20-years epochs, and single emission scenario. To address those limitations in N1.0, a
second generation of enhanced and updated NARCliM simulations (N1.5 thereafter) were
performed.

Designed to complement N1.0, N1.5 provided continuous long-term simulations
instead of 20-year periodic simulations provided by N1.0. In the meantime, N1.5 used two
out of three RCMs from N1.0 and the same model domains to enable users to choose either
or both datasets without consideration of the impacts from change in the boundary and/or
regional model physics. In N1.5, 12 sets of regional climate projections were generated
by downscaling from three selected CMIP5 GCMs for two Representative Concentration
Pathway (RCP8.5 and RCP4.5) [35].

Nishant et al. (2021) [35] and Ji et al. (2022) [36] have evaluated and compared N1.0
and N1.5 in simulating historical mean temperature and precipitation, and climate extremes
over southeast Australia. The results indicated that N1.5 performed substantially better
than N1.0 in capturing seasonal pattens and magnitudes of precipitation, while its skills
for simulating maximum and minimum temperatures were similar to those of N1.0. N1.5
simulations project a hotter and drier future relative to N1.0. N1.0 and N1.5 ensembles
provide an improved, more comprehensive data set for studying climate change.

Di Luca et al. (2018) [37] used 10 km simulations from N1.0 to evaluate the projected
changes in snow cover and snow depth over the Australian Alps region. Their results show
that snow cover extent and snow depths decrease by about 15% and 60% by 2030s and
2070s relative to 2000s.

Until now research over Australian Alps has only focused on snow related future
changes. The current climate and the projected future changes over this region are not fully
understood. In this study we use data from two generations of regional climate simulations
N1.0 and N1.5 to quantify current and future changes in temperature and its extremes.

2. Data
2.1. Observation

Gridded observations are from Australian gridded climate data -AGCD [38], which
is at a spatial resolution of 0.05◦ by 0.05◦. Spatial fields of the two variables (maximum
temperature, and minimum temperature) are obtained from an interpolation of station
observation across the Australian continent.

2.2. Modelling Outputs

The outputs are from two generations of NARCliM. Both NARCliM (N1.0 and N1.5)
use same domains: the outer domain is the CORDEX (Coordinated Regional Climate
Downscaling Experiment) Australasia domain (https://cordex.org/domains/region-9-
australasia/, accessed on 10 September 2022) with 50 km resolution, the inner domain
covers southeast Australia with 10 km resolution (Figure S1). Both use 30 vertical levels in
their simulations. In N1.0, four CMIP3 GCMs were selected to drive three selected regional
climate models (RCMs) to form a 12-member GCM/RCM ensemble [13]. Four GCMs:
MIROC3.2, ECHAM5, CCCMA3.1, and CSIROMK3.0 were selected based on performance,
independence, and diversity criteria: (i) adequate performance when simulating historic
climate; (ii) most independent; (iii) cover the largest range of plausible future precipitation
and temperature changes for Australia. We used the SRES A2 emission scenario for future
projections. The selected RCMs (Table S1) correspond to three different physics scheme
combinations of the Weather Research and Forecasting model (WRF) V3.3 [39], which were
chosen for adequate skill and error independence, following a comprehensive analysis of
36 different combinations of physics parametrizations over eight significant east coast lows
(ECLs) [40,41]. Each simulation consists of three 20-year-period runs (1990–2009, 2020–2039,
and 2060–2079) (Table 1).

https://cordex.org/domains/region-9-australasia/
https://cordex.org/domains/region-9-australasia/
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Table 1. NARCliM1.0 and NARCliM1.5 simulations used in this study. Here for clarity, blue and
orange colours differentiate between N1.0 and N1.5 simulations.

Simulation-
Name Driving GCM RCM WRF Version Historical

Period Future Periods CMIP Future
Pathway

CGCM3.1-R1 CGCM3.1 R1 WRF3.3 1990–2009 2020–2039;
2060–2079 SRES A2

CGCM3.1-R2 CGCM3.1 R2 WRF3.3 1990–2009 2020–2039;
2060–2079 SRES A2

CGCM3.1-R3 CGCM3.1 R3 WRF3.3 1990–2009 2020–2039;
2060–2079 SRES A2

MK3.0-R1 Mk3.0 R1 WRF3.3 1990–2009 2020–2039;
2060–2079 SRES A2

MK3.0-R2 Mk3.0 R2 WRF3.3 1990–2009 2020–2039;
2060–2079 SRES A2

MK3.0-R3 Mk3.0 R3 WRF3.3 1990–2009 2020–2039;
2060–2079 SRES A2

ECHAM5-R1 ECHAM5 R1 WRF3.3 1990–2009 2020–2039;
2060–2079 SRES A2

ECHAM5-R2 ECHAM5 R2 WRF3.3 1990–2009 2020–2039;
2060–2079 SRES A2

ECHAM5-R3 ECHAM5 R3 WRF3.3 1990–2009 2020–2039;
2060–2079 SRES A2

MIROC-R1 MIROC R1 WRF3.3 1990–2009 2020–2039;
2060–2079 SRES A2

MIROC-R2 MIROC R2 WRF3.3 1990–2009 2020–2039;
2060–2079 SRES A2

MIROC-R3 MIROC R3 WRF3.3 1990–2009 2020–2039;
2060–2079 SRES A2

CanESM2-R1 CanESM2 R1 WRF3.6 1951–2005 2006–2100 RCP8.5
CanESM2-R2 CanESM2 R2 WRF3.6 1951–2005 2006–2100 RCP8.5

ACCESS1-0-R1 ACCESS1-0 R1 WRF3.6 1951–2005 2006–2100 RCP8.5
ACCESS1-0-R2 ACCESS1-0 R2 WRF3.6 1951–2005 2006–2100 RCP8.5
ACCESS1-3-R1 ACCESS1-3 R1 WRF3.6 1951–2005 2006–2100 RCP8.5
ACCESS1-3-R2 ACCESS1-3 R2 WRF3.6 1951–2005 2006–2100 RCP8.5

N1.5 was designed to address three limitations of N1.0: old CMIP3 driving GCMs,
short 20-year simulations and single emission scenario [35]. For N1.5, three CMIP5 GCMs
were selected to force the two of the RCMs used in N1.0 to simulate regional climate from
1950 to 2100 (Table 1). Two emission scenarios (RCP8.5 and 4.5) are used. N1.5 does not
replace N1.0 but updated and enhanced it [35]. In N1.5, WRF3.6 was used instead of WRF3.3
used in N1.0. The major differences between them were in physics options. The newer
version had more physics available for use. For example, Noah-MP, Community Land
Model Version 4 (CLM4), and modified Noah LSM land surface model; NNSL 2-moment,
CAM5, and HUJI spectral bin microphysics options; QNSE-EDMF and Grenier-Bretherton-
McCaa PBL schemes; and WRF-Hydro model were new physics in WRF V3.6. However,
those new available physics options weren’t used in N1.5, instead, N1.5 used the same
physics combinations as N1.0 (Table S1).

Through carefully selecting models [13] we have attempted to minimize issues related
to model dependence. By using this model selection process in N1.0 and N1.5, relatively
small ensembles can reproduce the ensemble mean and variance from the large parent
ensemble (i.e., CMIP ensembles) and minimize the overall error [42].

Considering clear cold biases in the N1.0 and N1.5 [14,43], the bias-corrected maxi-
mum and minimum temperatures are used in the study. The temperature bias correction
was performed using gridded observational dataset from AGCD [38]. The original AGCD
grid at 5 km spatial resolution was resampled to WRF grid using inverse distance weighting.
The simulated daily maximum and minimum temperature cumulative probability distri-
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bution function (CDF) is adjusted towards the observed CDF as given by fitting Gaussian
distributions. The bias correction was applied to each grid point separately. [28,29].

3. Method

We first used observed AGCD daily maximum and minimum temperature to analyse
annual means of maximum and minimum temperatures from 1950 to 2019 and compared
them in high elevation (above 1200 m) and low elevation (below 1200 m) areas within
the blue rectangle domain shown in Figure 1. This analysis helped us to understand the
historical changes in maximum and minimum temperatures over the Australian Alps.

We then used the overlapping periods (i.e., 2060–2079 and 1990–2009) between N1.0
and N1.5 to examine the future projections of maximum and minimum temperatures. Since
N1.5 simulation historical data were available until 2005, we took the remaining four years
(2006–2009) from the RCP8.5 projection run noting that there were minimal differences
between all RCP future scenarios for this period. We then further assessed if those future
changes are elevation dependent.

We also analysed long-term time series of maximum and minimum temperature for
high and low elevation areas for each of N1.0 and N1.5 simulations and their ensemble
mean. This analysis allows us to analyse differences between N1.0 and N1.5 and their
projections for high and low elevations.

For assessment of future changes in temperature extremes, we evaluated climate
extremes based on daily temperature as defined by Expert Team on Sector-specific Climate
Indices (ET-SCI; [44]. We used the ClimPACT version 2 software to calculate the ET-SCI
indices (https://climpact-sci.org/, accessed on 10 September 2022), focussing on daily
maximum and minimum temperatures.

Although ClimPACT produced more than 33 indices, we only selected six key indices
based on the following considerations (Table 2): 1. to capture key aspects of temperature
extremes; for example, we chose absolute indices (e.g., coldest day (TNn)), threshold-based
indices (e.g., number of warm day (TX90P), number of warm night (TN90p), number of
days when minimum temperature is less than 2 ◦C (TNlt2)), and duration indices (e.g., cold
and warm spell duration indices (CSDI, WSDI)); and 2. to capture extremes which have an
impact on society and infrastructure; for example, we selected extreme indices like TNlt2
and WSDI which have large impacts on agriculture and health [45].

Table 2. List of ET-SCI Indices assessed in this study.

No Index Definition Units Timescale Sectors

1. CSDI

Cold spell duration indicator
(Annual count of days with at

least 6 or more consecutive days
when minimum temperature <

10th percentile)

days Annual

Health, agriculture and food
security, coasts, disaster risk
reduction, energy, fisheries,
forestry/GHGs, cryosphere

2. TNlt2 Number of days when minimum
temperature below 2 ◦C days Monthly/Annual Agriculture and food security,

forestry/GHGs, cryosphere
3. TN90p Number of warm nights days Annual Energy
4. TX90p Number of warm days days Annual Energy

5. WSDI

Warm spell duration indicator
(Annual number of days

contributing to events where 6 or
more consecutive days experience

maximum temperature > 90th
percentile)

days Annual

Health, agriculture and food
security, water resources and
food security, coasts, disaster

risk reduction, energy,
fisheries, forestry/GHGs,

cryosphere

6. TNn Coldest daily minimum
temperature

◦C Annual/Monthly
Agriculture and food security,

energy, forestry/GHGs,
cryosphere

https://climpact-sci.org/
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The statistical significance for each grid cell were calculated using a non-parametric
Mann-Kendall test (α = 0.05) assuming equal variance to assess future changes (compared
to historical period) in climate extremes. Statistical significance on ensemble mean were
then separated into three classes following Tebaldi et al., (2011) [46] to identify regions of
statistically significant change with model agreement. This is to take into consideration
the presence of internal climate variability and to assess the degree of consensus between
models on the significance of a change. There were 12 members in N1.0 model ensemble,
six members in N1.5 and 18 members in combined ensemble N1.0 + N1.5 (hereafter N1.X).
For each grid cell, when 50% or more of the model ensemble showed significant change
and at least 80% of those models agreed on the direction of change, the difference in that
grid cell was considered significant which is represented by a stippling. If at least 50% of
the model ensemble showed significant change, but less than 80% of those models agreed
on the direction of change, the multi-model mean was not shown in the subsequent figures,
instead, the grid cell was shown in white, indicating significant model disagreement on
the projected change. Finally, if less than 50% of the model ensembles showed a significant
change, we showed the multi-model mean in the subsequent figures without indication
of significance.

We assessed future annual and seasonal changes in maximum and minimum temper-
atures, and temperature extremes. The four seasons were summer (December-January-
February, DJF), autumn (March-April-May, MAM), winter (June-July-August, JJA) and
spring (September-October-November, SON).

4. Results
4.1. Observed Changes in Maximum and Minimum Temperatures

Maximum and minimum temperatures over the Alps (above 1200 m) are extracted
from AGCD [38]. The anomaly (calculated with respect to 1950–2019 base period) of
maximum and minimum temperature over the Alps are analysed between 1950 and 2019
(Figure 2). Irrespective of large inter-annual variability, there is a clear increasing trend in
both maximum and minimum temperatures, which is statistically significant. Increase in
maximum temperature is however stronger than minimum temperature. Increases in both
maximum and minimum temperature are found to be accelerating after 1990, with almost
two-fold increase in the long-term mean (Figure S2).

Figure 2. Anomaly of observed (AGCD) annual mean of maximum and minimum temperature
and their trends for Australian Alps. The trends are statistically significant using a non-parametric
Mann-Kendall test at the 95% confidence level.
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We also analyse the relationship between annual mean of maximum/minimum tem-
perature at high (above 1200 m) and low (below 1200 m) elevation areas within the blue
rectangle domain for the period of 1950–2019 (Figure 3). The results suggest that annual
mean maximum temperature increases at a faster rate (0.2 ◦C/decade) in high elevation
areas as compared to low elevation areas (0.19 ◦C/decade) (Figure 3a), however their
difference in trend is not significant. For minimum temperature, the rate of increase at
high elevation areas is however smaller than at low elevation areas (Figure 3b). Increase
in annual mean maximum temperature for high elevation is mostly contributed by sub-
stantial increases in Winter and Spring seasons (Figure S3c,d). Slower increase in annual
mean minimum temperature for high elevation is determined by Summer and Autumn
seasons. In contrast, minimum temperature still increases faster for high elevation than
low elevation in Winter and Spring (Figure S4c,d).

Figure 3. Plots of annual mean maximum (a) and minimum (b) temperatures for high and low
elevation for 1950–2019. The trends are statistically significant using a non-parametric Mann-Kendall
test at the 95% confidence level.
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These results indicated that maximum temperature increases at a faster rate than
minimum temperature over Australian Alps. Maximum temperature over high elevation
areas also increase slightly faster than low elevation areas, especially during Winter and
Spring. Minimum temperature generally increases slower for Australian Alps than low
elevation areas, but still faster in Winter and Spring (Figure S4c,d).

4.2. Projected Changes in Maximum and Minimum Temperatures

Multi-model means of projected changes in annual mean of maximum temperature
from the N1.0, N1.5 and N1.X simulations are shown in Figure 4. Changes in maximum tem-
perature show similar spatial distribution between N1.0 and N1.5, with stronger warming
on the Australian Alps than surrounding areas (the coastal and inland areas) (Figure 4a,c).
About 2–2.5 ◦C and 2.5–3 ◦C increase is projected in N1.0 and N1.5 respectively. Larger
increase in maximum temperature in N1.5 than N1.0 is due to hotter GCMs used in N1.5
(Figure S5). N1.5 was designed to complement N1.0, hotter CMIP 5 GCMs were selected to
use in N1.5 in combination with selected CMIP3 GCMs in N1.0 to cover the overall space of
possible future changes in temperature and precipitation [35]. The combination of N1.0 and
N1.5, which is N1.X, represents possible future change, which also show larger increases
in maximum temperature along the Australian Alps than surrounding areas, with largest
increases over the high elevation area (Figure 4e).

Figure 4. Projected changes in annual mean of maximum and minimum temperatures for N1.0, N1.5
and N1.x for 2060–2079 relative to 1990–2009 (unit: ◦C). Stippling indicates statistically significant
changes using a non-parametric Mann-Kendall test at the 95% confidence level. The black solid lines
are the 1200 m contour where the high elevation areas are.
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Significant increase in minimum temperature is also projected for the Australian Alps
and surrounding areas (Figure 4b,d,f), however, largest increase is projected along the
eastern coast even if Australian Alps also have larger increase than inland areas. These
results indicate that future change in maximum temperature is faster than change in
minimum temperature, especially for the Australian Alps.

Future changes in maximum and minimum temperatures with respect to elevation for
N1.0 and N1.5 are shown in Figure 5. It is evident that change in maximum temperature
is elevation dependent, with larger increase for higher elevation areas (Figure 5a,c). In
contrast, change in minimum temperature does not show clear increasing trend with
elevation (Figure 5b,d). The changes in maximum and minimum temperatures for N1.5 are
larger than those for N1.0.

Figure 5. Scatter plot of future changes in maximum and minimum temperatures for 2060–2079
relative to 1990–2009 vs. elevation. Here each dot represents multi-model mean future change in
maximum and minimum temperature for N1.0/N1.5 respectively for a NARCliM grid cell over the
Alpine region.

Furthermore we compared the N1.5 150-year timeseries of anomalies (reference period-
1990–2009) of maximum and minimum temperatures with N1.0 (Figure 6). The N1.5
maximum temperature timeseries aligns well with the N1.0 epochs and adequately fills
the temporal gaps, however N1.5 simulations project larger warming compared to N1.0
simulations for high and low elevation for the near future (2020–2039) and the far future
(2060–2079). Differences in temperature between N1.0 and N1.5 for 2020–2039 is about
0.2 ◦C, but it become more than 0.5 ◦C for 2060–2079. Negligible differences in maximum
temperature are seen between high and low elevation before 2010s. The difference starts to
increase after 2020s and accelerates after 2060s (Figure 6a). Minimum temperature anomaly
is almost identical for high and low elevation for N1.0 and N1.5. However, N1.5 projects
stronger minimum temperature increases than N1.0 (Figure 6b).
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Figure 6. Time series (from 1951–2099) of maximum and minimum temperatures anomalies (cal-
culated with respect to 1990–2009) for high and low elevation for N1.0 and N1.5. Here red and
blue solid lines denote the ensemble mean of NARCliM1.5 (N1.5) simulations for high and low
elevation respectively, brown, and green solid lines represent the ensemble mean of NARCliM (N1.0)
simulations for high and low elevation respectively. The shading denotes the max and min across the
ensemble members.

Projected seasonal changes in maximum temperatures for 2060–2079 relative to 1990–
2009 are shown in Figure 7. Larger increases in maximum temperature are projected for
southeast Australian in summer and spring than Autumn and Winter, however, faster
warming for Australian Alps compared to surrounding areas is seen in Winter when the
largest increase is over the top of the Alps (Figure 7c,g). Compared to N1.0, N1.5 projected
more intense warming over the Alps in Winter.

Like maximum temperature, minimum temperature is also projected to increase more
in Summer and Spring for southeast Australia (Figure S6), but the Alps does not show
clearly faster warming for minimum temperature than surrounding areas in any seasons.

As shown in Figure S5, combination of N1.0 and N1.5 selected GCMs generally covered
the future change space of the entire CMIP5 ensemble (RCP8.5), then the combined N1.X
ensemble can offer an improved sampling of uncertainty in future change. However, we
should acknowledge that CMIP3 GCMs are quite different from CMIP5 GCMs in terms
of modelling and emission scenario. As discussed before, past studies have shown that
for key climate variables, both CMIP3 and CMIP5 GCMs roughly project similar future
changes in the highest emission scenario [47,48]. Based on these results CMIP3 and CMIP5
GCMs for the highest emission scenario can be combined into expanded ensemble.
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Figure 7. Projected seasonal changes in maximum temperature for N1.0, N1.5 and N1.x for 2060–2079
relative to 1990–2009. Stippling indicates statistically significant changes using a non-parametric
Mann-Kendall test at the 95% confidence level. The black solid lines are the 1200 m contour where
the high elevation areas are.

4.3. Projected Changes in Temperature Extremes

Like mean maximum and minimum temperatures, the majority of temperature ex-
tremes are also projected to significantly change in future. For example, TNlt2, TN90P,
TX90P, TNn and WSDI show clearly larger changes for the Australian Alps than the sur-
rounding areas (Figure 8).

Figure 8. Projected changes in annual CSDI, TNlt2, TN90P, TX90P, TNn and WSDI for N1.0, N1.5 and
N1.x for 2060–2079 relative to 1990–2009. Stippling indicates statistically significant changes using a
non-parametric Mann-Kendall test at the 95% confidence level. The black solid lines are the 1200 m
contour where the high elevation areas are.
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Both N1.0 and N1.5 project future decreases in cold spell duration (CSDI). However,
those decreases are not statistically significant (Figure 8a,g). Similarly, Both N1.0 and N1.5
also project decreases in Tnlt2 for southeast Australia. These decreases are significant
and elevation dependent (Figure 8b,h). N1.0 and N1.5 project more than 50 and 70 days
decreases in TNlt2, respectively. Larger decrease in TNlt2 can be observed over the higher
elevation Alps than surrounding areas.

Both N1.0 and N1.5 project significant increase in numbers of warm nights (TN90p)
and warm days (TX90p). N1.0 projects more than 9 warm nights increase for southeast
Australia and more than 15 warm nights increase for Australian Alps (Figure 8c). N1.5
generally projects more warm nights than N1.0, with more than 12 warm nights increase for
southeast Australia and more than 18 warm nights increase for Australian Alps (Figure 8i).
Similarly, N1.0 and N1.5 project more than 10 and 15 warm days increase for southeast
Australia and more than 20 and 25 warm days increase for the Australian Alps (Figure 8d,j),
respectively. The increase in warm days is clearly elevation dependent, while the increase
in warm night is elevation dependent but not as strongly as the increase in warm days.

For TNn, N1.0 projects 1.6–2.0 ◦C increase over southeast Australia, and 2.0–2.4 ◦C
increase over Australian Alps. More than 2.4 ◦C increase is projected for top of the Alps
(Figure 8e). N1.5 projects larger increase in TNn than N1.0, with 2.0–2.4 ◦C increase in TNn
for southeast Australia, and 2.4–2.8 ◦C increase in TNn for the Alps, even larger increase
(more than 2.8 ◦C) for top of the Alps (Figure 8k). These results suggest largest increase in
TNn for the Alps than surrounding areas and the increase is elevation dependent. For WSDI,
0–20 days increases are projected for southeast Australia in N1.0, 20–30 days increases for
the Alps and more than 30 days increase for top of the Alps (Figure 8f). N1.5 projects larger
increase in WSDI than N1.0, with 20–30 days increase for southeast Australia, 30–40 days
increases for the Alps and more than 40 days increases for top of the Alps (Figure 8l). Like
TNn, the changes in WSDI are also found to be elevation dependent.

5. Discussion

In this study, we use observed maximum and minimum temperature from AGCD and
simulated maximum and minimum temperature from N1.0 and N1.5 to assess changes in
temperature over Australian Alps region.

Observed maximum and minimum temperature are taken from AGCD [38], which is
obtained by interpolating the data at stations onto a grid. There are not many stations over
the Australian Alps, especially for the high elevation areas, which would result in substan-
tial uncertainties in the gridded temperature and precipitation. However, temperature is
not as localised as precipitation, and we use mean temperature over grids above and below
1200 m to represent temperature for high and low elevation, which minimise the impact of
uncertainties due to sparse temperature monitoring stations over high elevation.

Both N1.0 and N1.5 simulations project significant future warming over Australian
Alps, however, the magnitude of changes in maximum and minimum temperature, and
temperature extremes for the N1.5 simulations is larger than that of the N1.0 simulations,
even if the spatial patterns of future changes are comparable. These major differences can
be partly explained by the driving GCMs in N1.0 and N1.5 simulations and the higher
emission scenario used in these simulations. The CMIP5 GCMs in N1.5 are hotter than
those CMIP3 GCMs in N1.0 [35] (Figure S5).

This paper also presented combined results of N1.0 and N1.5 (N.1X) for the future
mean maximum and minimum temperature and its extremes. N1.X projections demonstrate
the complementary utility of N1.5 with the original N1.0 and the underlying objective that
N1.5 simulations do not replace N1.0 simulations, rather, these updated and enhanced
simulations complement N1.0 simulations by expanding the future change space covered
by the simulations. Compared to CMIP3 GCMs in N1.0, all CMIP5 GCMs in N1.5 projected
a hotter future expanding the future change space of the CMIP3 GCMs (Figure S7). Together
N1.0 and N1.5 provide a more complete sampling of this combined future change space.
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However, it should be noted that N1.0 and N1.5 are driven by GCMs from different
generation of CMIP, and emission scenarios used in N1.0 and N1.5 are not the same.

Due to clear cold biases in N1.0 and N1.5 simulations [35], bias-corrected temperature
instead of original simulated temperature was used to assess future changes in temperature
and its extremes. Bias-corrected temperature is better for calculating threshold related
indices such as TNlt2, however, bias-correction also brings some uncertainties as future
climate projections are corrected using present climate correction factors. It is not always
accurate to assume that present climate biases will be maintained in time.

Elevation dependent warming (EDW) was identified and assessed in multiple studies
over the Tibetan Plateau [49,50]. Some mechanisms such as surface albedo feedback, cloud
feedback, aerosol radiative forcing and free tropospheric warming, are suggested to explain
the phenomenon [51–54]. Surface albedo feedback (SAF) is considered as a key driver for
EDW [53,55,56]. Therefore, we assess future changes in albedo in N1.0 and N1.5 for the
Australian Alps which show significant decrease in albedo in cold seasons, especially in
winter (Figure 9). The largest decrease in albedo is mostly caused by significant decrease
in snow depth and snow cover during the cold season [37]. The changes in maximum
temperature have stronger correlation with changes in albedo than changes in minimum
temperature, which is as expected as incoming shortwave radiation, which is directly
affected by albedo, only occurs during the day when maximum temperatures generally
occur. These results align with the finding of previous study of Rangwala et al., 2013 [57].
The Australian Alpine region is much smaller than the Tibetan Plateau, and elevation
of Australian Alps is also much lower, however, similar EDW can be seen in N1.0 and
N1.5 future projections which indicate mechanism to cause EDW might be similar. Other
possible changes in atmosphere circulations and precipitation might also contribute to
the changes in temperature over the region. In winter, mid-latitude weather systems are
projected to shift south and the westerlies are projected to strengthen. Concurrent and
related changes in various measures of mid-latitude circulation are projected, including a
more positive Southern Annular Mode, and a decrease in the number of fronts in southern
Australia, which result in decrease in projected precipitation over Australian Alps [37]
that might contribute to the temperature warming over the region. Further analyses are
required to assess contribution from different drivers to result in EWD.

Figure 9. Future changes in mean seasonal albedo for 2060–2079 relative to 1990–2009 for N1.0, N1.5
and N1.x. Stippling indicates statistically significant changes using a non-parametric Mann-Kendall
test at the 95% confidence level. The black solid lines are the 1200 m contour where the high elevation
areas are.
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The faster warming and decrease in snow cover extent and snow depths will sub-
stantially increase threats for Australian Alps such as loss of biodiversity, increase in pest
and weeds, changes in demand for tourism activities and increase costs to maintain ski
business. The finding from the study can be used for making relevant policies to minimise
the impacts.

6. Conclusions

This paper assessed observed changes in maximum and minimum temperature over
the Australian Alps. The observations show that maximum temperature increases at a
faster rate for the Alps than minimum temperature, and it also increases at a faster rate for
the high elevation areas compared to the surrounding low elevation areas.

This paper also presents future projections of maximum and minimum temperature
and temperature extremes for N1.0 and N1.5 under high emissions scenarios. We show
that N1.0 and N1.5 project similar patterns of changes in temperature and its extremes even
if the magnitude of changes is different. Those differences in temperature and temperature
extremes between N1.0 and N1.5 are partially related to differences between the driving
GCMs. The combined future projections of both N1.0 and N1.5 (N1.X) provide a more
complete sampling of the future change space. However, there are some limitations of
combining CMIP3 SRES A2 and CMIP5 RCP8.5 projections due to variations in the driving
emissions.

N1.X projects larger increase in maximum temperature over the Australian Alps
than the surrounding low elevation areas, especially in winter. Changes in minimum
temperature are not as large as changes in maximum temperature. Temperature extremes
such as, TNlt2, TN90P, TX90P, TNn and WSDI are projected to significantly increase over
the Australian Alps than surrounding areas. This implies that Australian Alps will warm
much faster than surrounding areas under future climate.

The results of this study have broad implications for important decision-making
processes in the context of climate change adaptation. The outcomes of this work form a
baseline for short-, medium- and long-term responses to temperature increases and the
facilitation of effective and responsive climate-resilient planning over the Australian Alps.

Supplementary Materials: The following supporting information can be downloaded at: https:
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