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ABSTRACT

An important source of model uncertainty in climate models arises from unconfined model parameters in

physical parameterizations. These parameters are commonly estimated on the basis of manual adjustments

(expert tuning), which carries the risk of overtuning the parameters for a specific climate region or time

period. This issue is particularly germane in the case of regional climate models (RCMs), which are often

developed and used in one or a few geographical regions only. This study addresses the role of objective

parameter calibration in this context. Using a previously developed objective calibration methodology, an

RCM is calibrated over two regions (Europe and North America) and is used to investigate the trans-

ferability of the results. A total of eight different model parameters are calibrated, using a metamodel to

account for parameter interactions. The study demonstrates that the calibration is effective in reducing

model biases in both domains. For Europe, this concerns in particular a pronounced reduction of the

summer warm bias and the associated overestimation of interannual temperature variability that have

persisted through previous expert tuning efforts and are common in many global and regional climate

models. The key process responsible for this improvement is an increased hydraulic conductivity. Higher

hydraulic conductivity increases the water availability at the land surface and leads to increased evaporative

cooling, stronger low cloud formation, and associated reduced incoming shortwave radiation. The cali-

brated parameter values are found to be almost identical for both domains; that is, the parameter cali-

bration is transferable between the two regions. This is a promising result and indicates that models may be

more universal than previously considered.

1. Introduction

Information about the climate at regional scales has

become a major need for society and policy makers

(Christensen and Christensen 2007). A sophisticated
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way to determine this information at local scales is to use

regional climate models (RCMs) that allow down-

scaling of climate information available at the global

scale at high spatial resolution for a specific region

(Laprise 2008). Comprehensive ensembles of RCM

simulations are available for several continents, in par-

ticular over Europe (PRUDENCE and ENSEMBLES;

Christensen and Christensen 2007; van der Linden

and Mitchell 2009), South America [Climate Change

Assessment and Impact Studies (CLARIS; Menéndez
et al. 2010)], the United States [Project to Intercom-

pare Regional Climate Simulations (PIRCS; Takle

et al. 1999)], North America (NARCCAP; Mearns et al.

2012), the Arctic [Arctic Regional Climate Model In-

tercomparison (ARCMIP; Curry and Lynch 2002)], Asia

[Regional Climate Model Intercomparison Project

(RMIP) for Asia (Fu et al. 2005)], while for some conti-

nents RCM information is very limited. Within the on-

going Coordinated Regional Climate Downscaling

Experiment (CORDEX; Giorgi et al. 2009), this gap is

now filled by simulating all continents on the globe with

ensembles of different RCMs.

The new direction of globally coordinated regional

downscaling requires different regional models to sim-

ulate the climate over regions for which they have not

previously been applied. This opens up the question of

whether RCMs are transferable to other climate re-

gions, since for most models the development and tun-

ing have been constrained on a specific region of origin.

The transferability is particularly challenging, as the

specification of model parameters is a major source of

model uncertainty (Allen 1999;Knutti et al. 2002;Murphy

et al. 2004; Stainforth et al. 2005; Yokohata et al. 2010;

Sanderson 2011; Klocke et al. 2011; Bellprat et al. 2012a).

The transferability of RCMs has been studied pre-

viously in the Inter-CSE (continental-scale experiment)

Transferability Study (ICTS; Takle et al. 2007) as part of

the Global Energy and Water Cycle Experiment

(GEWEX). The experiments demonstrated that RCMs

are able to simulate different climates outside of the

domain for which the models have historically been

developed (native domains), yet model biases are

typically larger over domains not previously considered

(nonnative domains) (Rockel et al. 2008; Rockel and

Geyer 2008; Jacob et al. 2012; Mearns et al. 2012).

As a result Giorgi et al. (2012) argue that custom-

ization exercises (tuning of model parameters) need to

be conducted in order to reduce model biases over

nonnative domains. This implies that model parameters

should be allowed to change depending on the climate

considered, which is (depending on the model parame-

ter considered) not always evident from physical prin-

ciples. On the other hand, retuning of parameters for

different climates might lead to overtuning, as raised by

Jacob et al. (2012). Such an overtuning of parameters to

compensate for structural deficiencies poses consider-

able risks, as climate change projections might be al-

tered by parameter configurations (Murphy et al. 2007).

Overtuning of regional climate models has thus been a

concern of the Working Group on Numerical Experi-

mentation (WGNE) of the World Climate Research

Programme (WRCP) (Laprise et al. 2008). The rea-

sonable transferability of RCMs found by ICTS has

been considered as an argument against the criticism of

overtuning of RCMs, yet the lack of objective ap-

proaches to determine model parameters has so far

hindered the discussion on how to deal with model pa-

rameters related to both RCMs and GCMs.

Tuning of model parameters is presently still widely

performed manually based on expert knowledge, and of-

ten without following a predefined strategy. Documenta-

tion on how climate models are being tuned is scarce (but

see, e.g., Mauritsen et al. 2012). An objective and trans-

parent methodology to calibrate model parameters in

RCMs has been presented in Bellprat et al. (2012b, here-

after B12). The approach relies on a calibration procedure

developed for global climate models (Neelin et al. 2010;

Bracco et al. 2013). The main idea of the approach is to

approximate themodel response resulting fromparameter

perturbations using a computationally efficient statistical

regression model (metamodel) that is estimated on the

basis of a minimum set of model simulations. The esti-

mated metamodel is consequently evaluated in terms of

prediction accuracy using independent simulations of the

climate model and is used to sample the parameter space

for optimal model configurations. In this way large pa-

rameter spaces become tractable, since the metamodel is

computationally efficient and hence millions of parameter

experiments can be conducted. Using an automated ap-

proach reduces the risk of compensating errors, as it con-

siders simultaneously a large number model parameters,

observational datasets, and sources of uncertainty.

Here we use the same methodology and apply it over

two different model domains. The aim of this study is to

independently and objectively calibrate an RCM over

Europe and North America. This will address the

question of whether the model formulation can be

considered universal, or whether different parameter

configurations are objectively justifiable. These ques-

tions are also relevant when addressing the potential

danger of model overtuning. By extending the number

of parameters in comparison to B12 (from five to eight

model parameters), we further aim to reduce the re-

maining model biases.

The structure of the paper is as follows: Section 2

provides a description of the RCM setup for both model
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domains and a summary of the calibration framework.

Section 3 shows the calibration results and discusses

some of the important underlying processes. The results

are discussed and conclusions are made in section 4.

2. Methods

a. Regional model approach: Europe and North
America

We simulate the climate over the European andNorth

American continents using the regional climate model

Consortium for Small-Scale Modeling (COSMO)

Model in Climate Mode [CCLM (Rockel et al. 2008)]

following the procedures established in the CORDEX

framework (Giorgi et al. 2009). CCLM is a climate

modeling system relying on the numerical weather

prediction model COSMO (Steppeler et al. 2003), and it

has been used extensively to study the European climate

at a wide range of resolutions and for a number of pur-

poses (e.g., Suklitsch et al. 2008; Zubler et al. 2011;

Kotlarski et al. 2012; Ban et al. 2014). Therefore, we

entitle the European domain (EU) as the native domain

of the model and the North American domain (NA) as

the nonnative domain.

As in previous transferability studies (comparison

of RCM simulations over a native and nonnative

domains; Takle et al. 2007), the same model physics

are used for both domains as schematically illustrated

in Fig. 1 [reference configuration (REF) for both

domains]. The comparison of these two simulations

allows the assessment of the commonalities and dif-

ferences of model biases between the two continents.

Subsequently, amodel parameter calibration is performed

independently for each domain to obtain an optimized

configuration (OPT) for the same set of parameters. The

comparison of the determined optimal parameter distri-

butions allows the assessment of how the calibration of the

RCM depends upon the model domain.

The basic setup of the model follows B12. We use a

horizontal resolution of 0.448 (approximately 50 km)

and 32 atmospheric layers in the vertical. The model is

used with its standard suite of parameterizations (see

B12 for details). The simulations cover the period 1994–

98 for the calibration and 1990–2008 for the validation,

including the years of the calibration. Sea surface tem-

peratures and prognostic atmospheric variables at the

lateral boundaries are prescribed by reanalysis data

from ERA-Interim (Dee et al. 2011), using a relaxation

zone with a width of 12 grid points over each lateral

boundary.

The two computational domains with topography and

analysis domains are shown in Fig. 2. The two domains

over EU andNA consist of 1093 121 and 1753 150 grid

points in the horizontal, respectively. The black frames

or outlines in Fig. 2 show analysis regions, for which

spatial averages are considered in the calibration. The

NA domain is approximately 2.5 times larger than EU

and therefore contains more regions, which results in

approximately equally sized regions over both domains.

It is important to note that the consideration of a larger

domain for NA implies a larger error growth, since the

influence of the boundary conditions weakens with

increasing domain size. As a result, the magnitude of

internal variability is expected to be larger over NA,

purely due to themodel configuration (Alexandru et al.

2007). Further, the North American domain spans a

wider band of latitudes reaching tropical zones that

entail weather regimes not occurring over Europe,

such as the formation of tropical cyclones and the

North American monsoon (Adams and Comrie 1997;

Bukovsky et al. 2015).

b. Validation and performance measure

The simulations for both domains are validated

against observations of 2-m temperature (T2M), total

precipitation (PR), and total cloud cover (CLCT) using

the datasets listed in Table 1. For each variable we use

one reference dataset and additional datasets to esti-

mate the observational uncertainty (three for Europe

FIG. 1. Calibration approach studying the spatial transferability

of an RCM for the native domain (Europe) and nonnative domain

(North America). Both domains are first simulated using default

parameter settings (REF EU and REF NA). Based on the refer-

ence simulation, a parameter calibration is performed in both do-

mains independently (OPT EU and OPT NA). The analysis

includes an assessment of the models’ improvement due to cali-

bration and a comparison of the optimal parameter settings found

in the two different domains.
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and two for North America). An integrated measure

that summarizes the agreement between the model and

the observations is defined. This measure is maximized

by the calibration. For this purpose we employ an in-

tegrated performance score (PS; Bellprat et al. 2012a)

that is an extension of the climate prediction index (CPI)

defined in Murphy et al. (2004). PS computes the

average-squared errors between a model m and the

observations o for each validated variable (V5 3; T2M,

PR, and CLCT), each month of the year (T5 12) for all

simulated years (Y 5 5), and for each regional average

(regions shown in Fig. 2, whereR5 8 regions for Europe

andR5 24 regions for NorthAmerica). These errors are

scaled by the observed interannual variability so,

FIG. 2. Model domains and topographies for Europe andNorthAmerica at a resolution of 0.448. The area (number of grid points) of the

NorthAmerican domain is approximately 2.5 times larger than the European domain. (left) The analysis domains (black lines) for Europe

are from the PRUDENCE project (Christensen and Christensen 2007): Iberian Peninsula (IP), France (FR), British Isles (BI), mid-

Europe (ME), Alps (AL), Mediterranean region (MD), eastern Europe (EA), and Scandinavia (SC). (right) For the North America

analysis, the domains presented in Bukovsky (2011) are used: Appalachia (AP), central plains (CP), central tundra (CT), Deep South

(DS), eastern boreal (EBO), eastern taiga (ETA), eastern tundra (ET), Great Basin (GB), Great Lakes (GL), Mezquital Valley region

(MZ), mid-Atlantic region (MA), northern plains (NP), northern Rockies (NR), North Atlantic region (NA), Pacific Northwest (PNW),

Pacific southwest region (PSW), prairie (PR), southern Rockies (SR), U.S Southeast (SE), southwest region (SW), western boreal

(WBO), western taiga (WTA), and western tundra (WT).

TABLE 1. Observational datasets used for validation purposes over Europe and North America. The datasets denoted with a region

specification (EU or NA) define the reference dataset. The remaining observations are used to estimate the observational uncertainty.

(Expansions of acronyms are available at http://www.ametsoc.org/PubsAcronymList.)

Dataset Variables Resolution Period Reference

E-OBS (v.7) Temperature (EU) 0.448 1950–2013 Haylock et al. (2008)

Precipitation (EU)

CRU Time Series (v3.1) Temperature (NA) 0.58 1901–2009 Harris et al. (2013)

Precipitation (NA)

Cloud cover (EU and NA)

University of Delaware (v3.01) Temperature 0.58 1900–2006 Willmott and Matsuura (2009)

Precipitation

ISCCP flux data Cloud cover 2.58 1983–2008 Zhang et al. (2004)

HIRS Cloud cover 18 1989–2010 Wylie et al. (2005)
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allowing the computation of an average across all er-

rors. The scaling of the errors is further extended in

comparison to Murphy et al. (2004) by adding a mea-

sure of the observational uncertainty s« and the in-

ternal variability siv. In cases where the observational

uncertainty or the internal noise of the model is large,

the errors are downweighted. The final score is formed

using an exponential transformation of the average-

squared error, which scales the PS between 0 and 1 (1

being the highest score):

PS5 exp

2
666420:5 � 1

VRTY
�
V

y
�
R

r
�
T

t
�
Y

y

(m
y,r,t,y

2 o
y,r,t,y

)2

(s
oy,r,t

1s
ivy,r,t,y

1s
«y,r,t,y

)2

3
7775 . (1)

The total score is formed by a total of VRTY 51440

and 4320 squared errors for Europe and North America,

respectively, and thus considers much more spatial and

temporal dimensions than a standard validation using

seasonal mean biases. The total scaling of the errors in

(1) is formed by adding the standard deviations instead

of the variances to be consistent with B12; however, the

effect of adding the squared terms has been found to be

negligible.

c. Parameter calibration

Using the objective calibration methodology de-

scribed in B12, an independent calibration of uncertain

model parameters over both domains is conducted. A

short description of the methodology is provided here,

yet for more details and full equations the reader is re-

ferred to the original publication. The current applica-

tion is an extension of the study presented in B12, where

we considered five independent parameters. The current

application considers three additional parameters for

the calibration over Europe and conducts the same

calibration over North America. The final list of pa-

rameters calibrated in this study with the respective

predetermined uncertainty ranges are shown in Table 2

(tkhmin, soilhyd, and radfac are the additional param-

eters to those found in B12).

The selected parameters affect a wide range of im-

portant processes in the model: shallow convection

(entr_sc), subgrid-scale cloud formation (uc1), in-

teraction of clouds with radiation (radfac), auto-

conversion of cloud ice (qi0), turbulent transport of heat

and moisture (tkhmin), exchange of heat and moisture

between the atmosphere and the land surface (rlam_

heat), strength of transpiration of the vegetation related

to depth of rooting zone (root_dp), and hydraulic cy-

cling of soil moisture (soilhyd). The selection of these

parameters is based on sensitivity studies as presented in

Bellprat et al. (2012a).

The calibration approach relies on a statistical ap-

proximation of the climate model (i.e., metamodel) that

predicts the response of the model to parameter con-

figurations. This statistical approximation is computa-

tionally much more efficient than the physical model,

which allows the sampling of large numbers of param-

eter configurations and thereby determining optimal

parameter values. The estimation of the metamodel

requires RCM simulations that sample the edges and the

center of the eight-dimensional parameter space. These

simulations are restricted to a short period of five years

(1994–98 for EUand 1992–96 for NA), which has proven

to be sufficiently long to reach equilibrium in the model

performance score (Bellprat et al. 2012a). Initialization

of these simulations takes place on 1 January, from the

long-term simulation (REF, 1990–2008).

The chosen metamodel is a multivariate quadratic

regression model proposed by Neelin et al. (2010) that

TABLE 2. Selectedmodel parameters and short description of the involved processes. Some parameters have a unit denoted in parentheses.

The default values are shown in boldface, accompanied with a chosen uncertainty range.

Acronym Parameter or property Value and range

rlam_heat Scalar resistance for the latent and sensible

heat fluxes in the laminar surface layer

1, [0.1, 5]

entr_sc Entrainment rate for shallow convection (m23) 3 3 1024, [3 3 1025, 3 3 1023]

qi0 Threshold for conversion of cloud ice to snow 0, [0, 1024]

uc1 Parameter controlling the vertical variation of critical

relative humidity for subgrid cloud formation

0.8, [0, 1.6]

root_dp Uniform factor for the root depth field 1, [0.5, 1.5]

tkhmin Minimum vertical turbulent diffusion rate (m2 s21) 1, [0.1, 2]
radfac Fraction of cloud water and ice considered by the radiation scheme 0.5, [0.3, 0.9]

soilhyd Factor for the hydraulic conductivity and diffusivity 1, [1, 6]
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has been applied to coarse-resolution global model

simulations (Bracco et al. 2013) and high-resolution re-

gional model simulations over Europe (B12). For both

types of applications, the metamodel proved to reproduce

with high accuracy the response of the climatemodelwhen

model parameters were altered. The number of model

simulations required to estimate the metamodel is small,

which makes this emulator suitable for computationally

demanding climate models such as RCMs. More specifi-

cally, for each parameter two simulations using aminimum

and maximum value have to be carried out to sample the

boarders of the multidimensional parameter space (see

Fig. 3 for illustration of simulation design). Parameter in-

teractions are accounted for by changing two parameter

values to either theminimum value or themaximum value

at the same time for all possible parameter pairs. This

gives a total number of 2N 1 N(N 2 1)/2 5 44 simu-

lations, each 5-yr long, which are required to estimate

the metamodel with eight model parameters (N 5 8,

the number of parameters considered).

The interactions of parameters can hence be sampled

with four different experiments capturing all four corners

in the pairwise plane. To increase the accuracy of the pa-

rameter interaction terms, additional simulations ac-

counting for all different combinations have been carried

out as described in B12. This leads to an additional 84

simulations for the eight parameters considered in this

study. The effect of the parameter interactions is, however,

small (B12; Bracco et al. 2013) and thus additional simu-

lations have only been carriedout for the calibrationofEU.

Finally, one million parameter configurations are

evaluated with the metamodel to determine the optimal

parameter configuration. The parameter configurations

are sampled using a Latin hypercube design (McKay

et al. 2000; Gregoire et al. 2011). The verification of the

calibration is based on a long RCM simulation using the

OPT settings. This simulation spans the same period as

REF (1990–2008). It includes the 5-yr calibration period

but also 14 additional and independent years.

3. Results

a. Calibration results

1) EUROPE

We describe in this section the calibration results by

comparingREF, which has not previously been calibrated

using an objective approach (Rockel et al. 2008), with the

calibrated simulation (OPT) over both continents. The

simulation OPT is based on the calibration framework

over Europe andNorthAmerica (section 1) using the two

optimal parameter configurations that have been de-

termined. The two settings will be compared in section 3b.

The mean seasonal biases of REF and OPT are shown in

Figs. 4 and 5 for Europe and Figs. 6 and 7 for North

America, and the corresponding seasonal biases in in-

terannual temperature variability are shown in Figs. 8 and

9, respectively. The biases are related to the magnitude of

biases simulated by other RCMs and, when reported in

the literature they are accompanied with suggested rea-

sons leading to these biases.

The REF simulations over Europe show a large warm

bias in summer over the Mediterranean region, eastern

Europe, and the Iberian Peninsula (for regions refer to

definitions in Fig. 2). Suggested reasons are diverse, al-

though they have mainly been discussed in the context

of biases in land surface coupling (e.g., Rowell and Jones

2006; Vidale et al. 2007; Bellprat et al. 2013; Seneviratne

et al. 2013). The overestimation of temperature is ac-

companied by an underestimation of total precipitation

and cloud cover as shown in the middle and bottom

panels of Fig. 4 as well as by amoisture deficit in the soils

as discussed in Fischer et al. (2007). The correlation of

the pattern of these biases illustrates the complex in-

teractions of processes involved and disentangling these

has been the focus of several recent studies (Fischer

et al. 2007; Jaeger et al. 2008; Sutton et al. 2007; Davin

et al. 2011; Cattiaux et al. 2013; Boé and Terray 2014).

A large fraction of the summer temperature and

precipitation biases is reduced over the Mediterranean

FIG. 3. Illustration of design points required in order to estimate

the metamodel. The center is given by the REF simulation using

default parameter values. For each parameter a min and a max

value needs to be simulated to sample the borders (axial points) of

each pairwise parameter plane. The interaction of the two pa-

rameters is sampled by one of the four corner points.
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region and eastern Europe in the calibrated simulation

(OPT). This improved representation of the summer

climate to a colder and moister state is a notable result,

as it has persisted previous expert tuning efforts and

remains prominent in the majority of global and

regional climate models over semiarid continental re-

gions (Vidale et al. 2007; Christensen et al. 2008;

Mearns et al. 2012; Cattiaux et al. 2013; Bellprat et al.

2013; Kotlarski et al. 2014; Mueller and Seneviratne

2014). The achieved improvement is hence of wider

FIG. 4. Mean summer [June–August (JJA)] biases for the simulations (left) REF and

(right) OPT for the period 1991–2008 over Europe. The biases are shown for (top) temper-

ature, (middle) precipitation, and (bottom) total cloud cover.

15 JANUARY 2016 BELLPRAT ET AL . 825

Unauthenticated | Downloaded 08/13/24 05:33 PM UTC



FIG. 5. As in Fig. 4, but for mean winter [December–February (DJF)].
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interest and is discussed in sections 3c and 3d in

more detail.

The too warm mean summer conditions in REF are

accompanied by an overestimation of the interannual

summer variability (IASV) of temperature shown over

large parts of the domain in Fig. 8. The highest bias occurs

over easternEurope, where the variability is overestimated

by approximately 100% (1K). This overestimation of

IASV, again common to many models over semiarid re-

gions (Vidale et al. 2007; Fischer et al. 2012), improves

strongly in OPT—particularly over eastern Europe, where

the variability is heavily overestimated in REF but also

over the Mediterranean region, where the variability is

reproduced much more realistically.

The overestimation of simulated mean seasonal tem-

perature and its interannual variability is of significant

FIG. 6. As in Fig. 4, but for North America and a different observational reference dataset (see Table 1).
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concern in relation to climate change projections (Schär
et al. 2004). It has been shown that summer temperature

biases are accentuated in warmer, drier climates and

that climate models may therefore overestimate the

projected warming (Boberg and Christensen 2012). The

biases reach an upper limit due to constraints of soil

moisture depletion (Bellprat et al. 2013) and a linear

bias assumption hence leads to unphysical conditions.

The achieved reduction of summer temperature biases

in the control period is therefore of high importance to

reduce uncertainties of temperature projections associ-

ated with nonstationarities of the biases.

In winter the temperature biases are much smaller

than in summer and only enhanced biases in regions of

FIG. 7. As in Fig. 4, but for mean winter (DJF) over North America and a different observational reference dataset

(see Table 1).
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high topography are present. The model further over-

estimates precipitation over a large part of the domain in

winter, which is also apparent in the majority of RCMs

over Europe (Kotlarski et al. 2014). The biases in the

winter season remain almost unaffected by the calibra-

tion over Europe for both the mean and the interannual

variability. The temperature bias is already small in

winter and the remaining biases might result from

missing a height correction to the model data. The in-

terannual variability in winter is much larger than in

summer and is captured accurately in REF and OPT, as

it is largely determined by the lateral boundary forcing

for the European domain (Lüthi et al. 1996). Similar to

summer, the total cloud cover is underestimated over

southern Europe and overestimated over northern Eu-

rope in both REF and OPT, which causes biases in the

incoming shortwave radiation (Jaeger et al. 2008).

Biases of winter precipitation remain large in both sim-

ulations as in themajority ofRCMs. The enhanced bias has

so far not been discussed in the context of individual

drivers. Some of the bias results from the systematic

undercatch of true precipitation by rain gauges, particularly

inmountain areas (Kotlarski et al. 2014).A further possible

explanation for the overestimation of precipitation in the

models might result from a seasonal balance of compen-

sating biases. Unduly large precipitation amounts in winter

increase the infiltration of water into the soil and therefore

reduce the drying of the soils in summer, which is a main

FIG. 8. Bias in (top) summer (JJA) and (bottom)winter (DJF) temperature interannual variability for the simulations

(left) REF and (right) OPT for the period 1991–2008 over Europe.
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driver for hot temperature biases in CCLM. Considering

only the winter season in the calibration yields a different

optimal configuration that leads to a fundamental re-

duction of the winter precipitation bias according to the

metamodel (not shown). However, this finding does not

demonstrate a seasonal dependence on the model param-

eters. The required setup to prove a seasonal variation

would require two parameter values for each parameter,

one in winter and in summer, that are calibrated simulta-

neously (given the seasonal interplay as, e.g., in land sur-

face coupling). Calibrating these two parameters might

result in similar optimal values, as identified for the dif-

ferent model domains, even though the optimal values

differ when calibrated for each respective season in-

dependently. This aspect of temporal ‘‘transferability’’ is

not further explored here and should be placed in a phys-

ical context that supports a temporal dependence.

2) NORTH AMERICA

Summer temperatures over North America (Fig. 6) are

strongly overestimated over semiarid regions, such as the

Great Plains (CP and NP), the prairies, and the Deep

South (geographic names refer to the regions defined in

Fig. 2), but also over high latitudes, such as over the

western boreal and western tundra regions. Central North

America is a region of strong land surface coupling (Koster

et al. 2004) and temperature biases in these regions have

been related to erroneous simulation of land surface fluxes

(Klein et al. 2006; Mueller and Seneviratne 2014). Other

possible origins of the dry bias have been reported in re-

lation to the formation of the low-level jet, which is an

important source of moisture in central North America

(Helfand and Schubert 1995) and a trigger of convection

(Arritt et al. 1997; Seth and Giorgi 1998). An incorrect

simulation of this moisture transport could result in a

lack of moisture transport into central North American

regions, leading to a too dry climate. Consistent with

this picture, precipitation and cloud amounts are un-

derestimated in central North America. The structure

of this hot and dry bias is common among RCMs

and GCMs over North America (Mearns et al. 2012;

Mueller and Seneviratne 2014).

The identified summer biases over North America

decrease for temperature and precipitation in OPT.

FIG. 9. As in Fig. 8, but for North America and a different observational reference dataset (see Table 1).
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However, a large part of the bias remains. This indicates

that, for North America, either neglected processes in

the calibration or structural deficiencies need to be

addressed in order to achieve validation results com-

parable to those over Europe. This is also evident in the

bias of the interannual variability in summer (Fig. 9),

which decreases in OPT but remains large over the

Great Plains and Florida.

Winter temperature biases over North America

(Fig. 7) are smaller compared to summer temperature

biases, yet they are overestimated over large parts of the

domain, particularly in high-latitudes. The model gener-

ally overestimates precipitation in winter, yet the dry bias

for precipitation over Florida identified for summer re-

mains. The bias in cloud cover shows again a latitudinal

gradient which is yet more pronounced over the Boreal

and Arctic regions. The winter biases over North

America reduce in winter as shown over high latitudes in

Fig. 7. The overestimation of the Boreal temperature is

reduced by 1–2K, yet remains particularly over Alaska

and the Arctic. There is some indication for a reduction

of precipitation biases south of the Great Lakes and a

small increase in cloud cover bias over the Great Plains.

The biases remain generally similar as in REF.

The origin of the winter biases has not been in-

vestigated in the model and hence the mechanisms re-

main unknown. It is worth noting that the spatial density

of observational stations is low in high latitudes over

North America (New et al. 2000) and thus biases should

be considered with caution. The interannual temperature

variability (Fig. 9) is strongly overestimated over the

Great Plains and also over coastal areas near Florida. In

winter themodel captures the interannual variability very

accurately and outperforms many other RCMs simulat-

ing the North American climate (Mearns et al. 2012).

The overall magnitude of the biases is larger over

North America compared to Europe, which could be a

result of either modeling a larger domain or deficiencies

of the model to simulate a different climate. Generally,

the model biases lie within the range of biases identified

in other RCMs for both Europe and North America

(Kotlarski et al. 2014; Mearns et al. 2012), although a

particular deficiency of CCLM is the overly hot and dry

climate in summer.

b. Optimal model parameters

In this section we discuss the changes in model pa-

rameter settings identified by the calibration. We show

for this purpose in Fig. 10 the posterior parameter dis-

tributions (range of parameter values, blue histograms)

for both domains in comparison to the default values

(red vertical lines). The parameter ranges are con-

structed by sampling all parameter configurations that

yield the best performance according to the metamodel

and lie within an uncertainty estimate of the metamodel

determined by B12.

The optimal parameter configurations (dashed black

vertical lines in Fig. 10) for both domains agree very

well, and so do the width and shape of the density of the

distributions. As evident from Fig. 10, there is no in-

dication that the calibration over tunes the selected

parameters for a specific domain given the similarity of

the regional parameter distributions. This risk has been

raised in relation to CORDEX (Jacob et al. 2012), and

it has also been argued that climate change projections

could be affected by parameter uncertainty (Murphy

et al. 2007). The lack of evident overtuning in our

calibration exercise is a remarkable result, considering

the large number of parameters that are calibrated. The

result thus supports the idea that biases inherent to the

definitions of the model physics are corrected by model

calibration, in ways that are at least partly universal and

independent of the region considered.

It is of interest to conduct a comparison against B12,

where only the first five parameters have been considered

in an otherwise identical calibration over Europe. Note

that the optimal values for these five parameters remain

virtually unchanged. The consideration of three addi-

tional parameters did not alter the settings found in B12,

even though two of the additional parameters change

notably in OPT (compared to their default values). This

is a convenient but most likely not a general result, which

might partly arise from a weak interaction between the

parameters as they act in different physical parameteri-

zations. However, the contribution of the parameter in-

teractions is not negligible. Excluding the interactions in

themetamodel increases the error to predict independent

model simulations (10 simulations with random param-

eter values) by approximately 20%.

For both domains, the calibration finds higher values

for the amount of cloud water seen by the radiation

(radfac from default of 0.5 to 0.7) and much higher

values for the hydraulic conductivity (soilhyd from de-

fault of 1 to 6). The increase in the interaction between

clouds and radiation implies a 40% increase in the cloud

water and ice amount that interacts with the radiation.

Considering the experiment where only radfac is in-

creased, we find a net reduction of the surface energy

balance due to reduced incoming shortwave radiation.

This cooling is partly balanced by reduced outgoing

longwave radiation.

c. The role of the hydraulic conductivity

The substantial increase of the soil hydraulic con-

ductivity deserves a more detailed analysis, as the re-

spective adjustments are most significant for the
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performance of the model—from all parameter changes

considered. More specifically the calibration process

yields a substantial increase (by about a factor of 6) in

both model domains. This leads to higher availability of

soil moisture in the deeper soil layers and thereby in-

creases the evaporative fraction. Before discussing these

aspects in the next subsection in more detail, we here

address potential interpretations behind such an in-

crease of hydraulic conductivity. In particular, can it be

justified in terms of process understanding?

The hydraulic conductivity in CCLM is specified

depending upon soil type and soil water content, and

varies by several orders of magnitude (Doms et al.

2007). More specifically, the saturated hydraulic con-

ductivity covers a wide range, from 4.7 3 1025 to 1.7 3
1028m s21, between sand and peat soils. For un-

saturated soils the conductivity quickly drops by many

orders of magnitude with decreasing relative soil water

content. A comparison against the ECMWF Integrated

Forecast System (IFS) shows that the hydraulic

FIG. 10. Empirical densities (blue histograms) of the calibrated parameter values, which

perform equally well, given the uncertainty of the metamodel in predicting the model per-

formance. The calibration results for the eight calibrated parameters are shown for (top) Eu-

rope and (bottom) North America. In each panel, the dark blue lines show the parameter

uncertainty range, the red line the default parameter value (REF), and the black dashed line

the parameter combination of the best-performing simulation (OPT).
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conductivities are slightly larger in CCLM but generally

of a similar magnitude (Cloke et al. 2011). In compari-

son to the represented variability, an increase of the

hydraulic conductivity by about half an order of mag-

nitude, as proposed by our calibration, is thus a rela-

tively small perturbation.

The conductivity values used in our and other models

originate from a collection of measurements from the

literature (e.g., Rijtema 1969; vanGenuchten 1980). Are

these values, which are largely based on laboratory

measurements using soil columns, representative of the

grid boxes of climate models? As in most weather and

climate models, the grid-scale conductivities are repre-

sented according to the most common soil type, and no

consideration is given to subgrid-scale variability.

A possible interpretation for increasing the hydrau-

lic conductivities comes from the fact that the hydraulic

conductivity is a scale-dependent quantity that in-

creases with horizontal scale. Information on this

scaling comes from a multitude of field measurements

that have effective horizontal scales of typically 1–10 or

100–500m. Using data from a number of field studies,

Rovey and Cherkauer (1995) found that the effective

hydraulic conductivities applicable to horizontal scales

of O(100)m can be two orders of magnitude larger

than the laboratory values obtained from soil column

experiments.

The interpretation of this result relies on the hetero-

geneity of soils, which may include spatial variations in

soil type, micro- and macroporisity, subsurface aquifers,

etc. Heterogeneity may lead to a much higher hydraulic

transport than expected from laboratory measurements

of the hydraulic conductivity of the dominating soil type

(e.g., Gelhar 1986). In essence, the effective hydraulic

conductivity valid at the grid scale of the model (i.e.,

104–105m) cannot be inferred from laboratory mea-

surement of the most common soil type. Rather a

comparatively small soil fraction with high conductivity

may imply a higher effective conductivity at the grid

scale where the hydrological processes are explicitly

represented. Recently, objective methodologies to up-

scale small-scale heterogeneity effects have been ex-

plored (Samaniego et al. 2010), but exploitation of these

results for the current application are beyond the scope

of the current study.

It is further important to note that, in contrast to all

other parameters, the posterior distribution of the hy-

draulic conductivities is bimodal (Fig. 10). The calibra-

tion yields two optimal states of the parameter, one close

to the default and another at the upper bound with

higher density. This is an indication that the specified

calibration range is too narrow. To check on this po-

tential difficulty, we have repeated both calibrations

using an extended calibration range (1 # soilhyd # 10)

by extrapolating the simulated limit with the metamodel

and finding only very minor changes to the optimized

parameter.

d. Detailed analysis of European summer climate

The contribution to each parameter on this improve-

ment can be studied using the metamodel as the model

result can be decomposed into each parameter and each

parameter interaction term. Using the metamodel we

find that approximately 60% of the cooling of summer

temperatures and 80%of the increased precipitation are

caused by an increase in hydraulic conductivity. The

remaining cooling can be attributed to an enhanced in-

teraction of clouds and radiation, as well as an increase

in depth of the rooting zone.

For a better interpretation of these results, we analyze

the changes in the soil water balance for the Mediter-

ranean region, where the strongest changes occur in

OPT compared to REF by illustrating the change in the

soil water distribution of the first seven hydraulic soil

layers in Fig. 11. The figure shows the difference be-

tween OPT and REF of the relative soil moisture (soil

moisture divided by the field capacity) in the course of

the year. In OPT the surface layers are less saturated in

winter and moister in summer by about 10% of the field

capacity. The lower layers moisten throughout the en-

tire year, which leads to an increase in the relative soil

moisture of about 20%.

To explain these changes, the effect of the hydraulic

conductivity on the vertical transport of unsaturated

soils needs be considered. This vertical transport is de-

scribed by Richards equation, which quantifies the

changes in soil water contentQ due to a vertical gradient

of the water potential dC/dz scaled by the hydraulic

conductivity Kw,

dQ

dt
5

1

dz

�
K

w

�
dC

dz
1 1

��
, (2)

with the vertical axis z pointing upward, and where

2Kw(dC/dz1 1) represents the vertical flux of water. In

the case where the vertical gradient of the water po-

tential is small, the near-surface soil water content de-

creases because of gravity-induced downward flux into

lower levels.When the gradient is strongly negative (i.e., if

thewater content strongly increases with depth), the near-

surface soil water content increases as a result of capillary

forces that induce an upward (diffusive) flux of soil water.

The hydraulic conductivity affects both these processes.

Next, we investigate how the increase in hydraulic

conductivity resulting from calibration affects the mean

seasonal cycle of soil moisture, by considering the
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difference OPT 2 REF (Fig. 11). Overall, the gravita-

tional flux is increased with higher Kw, yielding higher

relative soil moisture content in the deep soil. In winter

this increase is at the expense of soil moisture in the

upper soil layers. In summer, when the upper soil layers

dry out, increased hydraulic diffusivity leads to an en-

hanced upward flux of soil moisture through capillary

forces, which increases the soil water content in the

upper layers relative to reference conditions.

The overall soil water content is increased as a con-

sequence of increased infiltration of precipitated shown

in Fig. 12. The infiltration rate increases linearly with the

hydraulic conductivity according to Darcy’s law in un-

saturated soils and thus enhanced infiltration is expected

in OPT. The solid line shows the annual cycle of the

water content integrated over 2m of the soil for OPT

compared to REF (dashed line) and the interannual

variability of OPT is shown by the gray band. The figure

shows that the total water content is increased inOPT by

about 20% for the entire annual cycle. Although this

change might seem large, it is small in comparison to the

range of model-based observations driven by the Water

and Global Change (WATCH) Forcing Data ERA-

Interim (WFDEI) meteorological forcing (Weedon

et al. 2014). The hydraulic conductivity is hence an im-

portant factor for controlling the vertical distribution of

soil moisture and also the total amount of soil water.

The modification of the soil moisture balance has

important consequences for summer climate due to

surface–atmosphere coupling (Vidale et al. 2007; Fischer

et al. 2007; Seneviratne et al. 2010). The changes in the

surface water balance and the boundary layer are illus-

trated in Fig. 13, showing the change in low cloud

cover, in the incoming shortwave radiation, and in the

evaporative fraction. The boundary layer in OPT is

substantially moister and more insulated with a strong

increase in evaporative fraction of 30% and increased

low cloud cover up to 15%. Higher evaporative frac-

tion results in stronger evaporative cooling, while the

increase in low cloud cover reduces the incoming

shortwave radiation. This decrease in the incoming

shortwave radiation is shown in the center panel of

Fig. 13, where downward radiation is reduced strongly

by to 20Wm22, lowering the net surface radiation

budget at the surface. Stronger evaporative cooling

and reduced net downward radiation leads to a cooling

of the summer climate, which agrees with the geo-

graphical pattern of reduced bias of mean summer

temperature (Fig. 4) and interannual summer tem-

perature variability (Fig. 8). Qualitatively similar im-

pacts are also evident over North America (Fig. 6), but

the reduction of the summer temperature bias amounts

to only about 1–2K and is substantially smaller than

over Europe (Fig. 4).

FIG. 11. Difference in monthly (period 1991–2008) relative soil moisture content (relative with respect to field

capacity; right-hand axis) for each layer of the soil as simulated by the calibrated simulation minus the reference

simulation (OPT2REF) over MD. The rows from top to bottom show the seven first hydraulically active soil layers

with increasing depth of the layer (left-hand axis). The dashed line shows the depth of the rooting zone.

FIG. 12. Annual cycle of the absolute soil moisture content in

the top 2 m of the soil for the simulations REF (dashed) andOPT

(solid line), and its interannual variability (standard deviation,

gray shading).
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4. Discussion and conclusions

Wehave analyzed the objective parameter calibration

for a regional climatemodel over a nativemodel domain

(which was involved in previous expert tuning) and

over a nonnative domain (with no previous tuning). The

calibration simultaneously addressed eight different

model parameters and was independently applied in

both domains.

The calibration yielded important improvements in

the representation of the summer climate for Europe

and North America that has resisted previous expert

tuning efforts. Most climate models suffer from an

overly dry summer climate with strong warm tempera-

ture biases and dry precipitation biases widely discussed

in recent studies (Boberg and Christensen 2012; Fischer

et al. 2012; Kotlarski et al. 2014). We demonstrate here

that parameter optimization strongly reduces these

biases with respect to both themean and the interannual

variability. A key role is played by increased hydraulic

conductivity, which increases soil moisture availability

at the surface and moistens the boundary layer in sum-

mer. The determined increased hydraulic conductivity

can be qualitatively explained by the scale dependency

of the hydraulic conductivity.

Our results also show that the calibration yields al-

most identical optimal values over the two domains.

This supports the robustness of the calibration meth-

odology and indicates that it addresses uncertainties in

the model physics that are common among different

regions. It also indicates that no overtuning with respect

to themodel domain occurs, which has been a concern in

the context of regional climate modeling (Laprise et al.

2008). The RCM used in this study is hence transferable

between the domains considered. We argue that as a

consequence, the transfer of an RCM to a nonnative

domain should not necessarily include a change in

model parameter values, unless there is some justifiable

evidence from validation and/or physical considerations.

A multitude of biases remain, despite the calibration

of parameters, particularly over North America, where

the summer climate remains overly warm and dry over

the Great Plains and Florida. Other prominent biases of

CCLM include an overestimation of precipitation in

winter over central Europe, a warm bias in winter over

boreal and tundra regions over North America and an

imbalance of total cloud cover, with too much cloud

formation in the north and too little in the south for both

model domains and both seasons. These biases should

be addressed in future model development.

An objective calibration of a climate model as the one

presented is certainly not a finite exercise. Recalibration

of the model with new model releases comprising new

physical parameterizations is fundamental to demon-

strate its added value. Likewise, changes in the model

configuration, such as an increase in horizontal resolu-

tion, would benefit from a revisited calibration as a va-

riety of model parameters are known to be resolution

dependent.
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