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ABSTRACT: The New South Wales (NSW)/Australian Capital Territory (ACT) Regional Climate
Modelling (NARCIiM) project aims to deliver robust climate change projections for southeast
Australia at a scale relevant for decision-making. In the first phase of the project, the Weather
Research and Forecasting (WRF) model with 3 physics scheme combinations, driven by NCEP/
NCAR reanalysis dataset as 'perfect’ boundary conditions, was run for a 60 yr period from
1950-2009 to assess the model's ability to simulate regional climate for southeast Australia. In this
study, model results for daily precipitation and maximum and minimum temperatures were com-
pared to gridded observations from the Australian Water Availability Project (AWAP) to evaluate
model performance at varying time scales using a number of statistical metrics. Results show that
all simulations have good representation of daily, monthly, seasonal, annual, multiannual and
decadal variation in precipitation and temperature. However, there is a bias in precipitation in the
northwest part of the domain (25-100%) and along the Great Dividing Range (75-150%). The
temperatures are systematically underestimated across the domain (2-3°C for maximum temper-
ature and 1-2°C for minimum temperature), suggesting the need for bias correction. The evalua-
tion results indicate that the cumulus scheme is critical to precipitation simulation, and planetary
boundary layer and radiation schemes are more important in temperature simulations. The
findings from this study give us confidence in the WRF model for long-term regional climate
modelling for southeast Australia. They also provide guidance in the parameterisation of the WRF
model in providing more reliable precipitation and/or temperature projections.
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1. INTRODUCTION

Global climate models (GCMs) are the most valu-
able tools to project future climate conditions, but
their coarse resolution (about 100-300 km) cannot
provide regional and local climate details for impact
studies (Vaze et al. 2011). Many downscaling meth-
ods have therefore been developed to transform
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climate information from the coarse resolutions of
GCMs to regionally relevant resolutions (10-50 km).
Dynamical downscaling (e.g. Frei et al. 2003, 2006,
Déqué et al. 2005, Giorgi & Lionello 2008) with
regional climate models (RCMs) is one of the com-
monly used downscaling methods. Many previous
projects including RMIP (Fu et al. 2005), PRUDENCE
(Christensen et al. 2007), ENSEMBLES (van der Lin-
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den & Mitchell 2009), NARCCAP (Mearns et al.
2012), and CLARIS-LPB (Solman et al. 2013) have
produced regional climate projections using RCMs.
Globally coordinated projects such as the Coordi-
nated Regional Climate Downscaling Experiment
(CORDEX) (Giorgi et al. 2009) collate and compare
the RCM simulations. Likewise, the New South
Wales (NSW)/Australian Capital Territory (ACT)
Regional Climate Modelling (NARCIiM) is a project
that endeavours to use RCMs to deliver robust cli-
mate change projections for NSW and the ACT at a
scale relevant for use in biophysical impact assess-
ments and local-scale decision-making (Evans et al.
2014).

In the NARCIM project, 4 GCMs and 3 RCMs
were objectively selected to undertake future projec-
tions (Evans & Ji 2012a, Evans et al. 2014). In the first
phase of the project, the 3 RCMs were used to down-
scale the NCEP/NCAR Reanalysis Project 1 data
(Kalnay et al. 1996) from 1950-2009 to assess the
RCM's ability to simulate the observed regional cli-
mate. The 3 RCMs are physics scheme combinations
of the Weather Research and Forecasting (WRF)
model (Skamarock et al. 2008) which were objec-
tively selected from 36 physics scheme combinations
(Evans & Ji 2012b, Evans et al. 2014).

Previous studies have shown that the WRF model
performs well in simulating the regional climate for
southeast Australia (Evans & McCabe 2010, 2013, Ji
et al. 2011, 2014, Evans & Westra 2012, Evans et al.
2012, 2013b). Evans & McCabe (2010) undertook an
evaluation of regional climate simulated over the
Murray-Darling Basin for the period 1985-2008.
They found that WRF was able to capture daily, sea-
sonal and inter-annual variability of precipitation
and mean temperature as well as recent extreme
events and a dominant inter-annual variation mecha-
nism (El Nino-Southern Oscillation, ENSO). Similar
model evaluations were done for other regions.
Argueso et al. (2012) evaluated WRF-simulated mean
and extreme precipitation in Spain for 1970-1999.
They found that the WRF model was largely capable
of capturing the various precipitation regimes,
although substantial errors were still observed in
monthly precipitation, especially during spring.
Andrys et al. (2015) undertook multi-decadal
(1981-2010) evaluation of WRF capabilities in simu-
lating precipitation and temperature extremes for
Western Australia, and they concluded that the WRF
model was able to simulate daily, seasonal and an-
nual variation in temperature and precipitation rea-
sonably well, including extreme events. Recently,
Katragkou et al. (2015) evaluated an ERA-Interim

reanalysis-driven WRF multi-physics ensemble for
the time period 1990-2008 over the EURO-CORDEX
domain. They found that the WRF model can repre-
sent the present climate with a reasonable degree of
fidelity. However, temperatures tend to be under-
estimated, and the largest temperature spread and
biases are seen in winter over north-eastern Europe.
Precipitation is overestimated in both winter and
summer but with a larger magnitude in summer.

From the common findings of the above studies, it
is clear that the WRF model is able to represent
regional climate, although systematic biases can be
seen in the simulations. As different combinations of
physics parameterisations were used in these stud-
ies, it seems that biases for temperature and precipi-
tation are linked to the boundary conditions, differ-
ent physical mechanisms and geographic location of
the model domain.

The main purpose of this study was to evaluate
three 60 yr simulations driven by NCEP/NCAR Re-
analysis Project 1 (NNRP) reanalysis data to assess
the RCM performance for southeast Australia. The
impact of physics scheme options on precipitation
and maximum and minimum temperatures in long-
term simulations is also discussed. The results will
provide guidance when using NARCIiM future pro-
jections for impact studies.

2. DATA
2.1. NARCIiM data

The selected RCMs are 3 physics scheme combina-
tions of the Advanced Research WRF (ARW) Version
3.3, which are referred to as R1, R2 and R3 (Table 1).
The 3 RCMs were chosen from 36 physics scheme
combinations (2 planetary boundary layer, 2 cumu-
lus, 3 microphysics and 3 radiation schemes) based
on 2 criteria: (1) adequate performance when simu-
lating historic climate. The full set of RCMs is evalu-
ated over the domain of interest in order to remove
from the set any models that are not able to ade-
quately simulate the climate; (2) the selected RCMs
are the most independent from each other. From the
set of RCMs that perform well, a subset is chosen
such that each chosen RCM is as independent as pos-
sible from the other RCMs (Evans et al. 2013a, 2014).
The model domain covers the CORDEX Australasia
region (Giorgi et al. 2009) with 50 km resolution and
the NARCIiM domain with 10 km resolution (Fig. 1).
Within the NARCIIM domain, the Great Dividing
Range (the most substantial mountain range in
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Table 1. Configuration of the 3 regional climate models in NARCIiM. The planetary boundary layer physics/surface layer

physics include Yonsei University (YSU)/Similarity theory (MMJ5) and Mellor-Yamada-Janjic (MYJ)/Similarity theory (Eta).

The cumulus physics are Kain-Fritsch (KF) and Betts-Miller-Janjic (BMJ) schemes. The radiation physics include

Dudhia/RRTM and CAM/CAM shortwave/long wave schemes. Other physics include microphysics (WDM 5 class) and land
surface physics (Noah LSM)

NARCIM Planetary boundary Cumulus Micro- Land surface Shortwave /
ensemble layer physics / physics physics physics longwave radiation
member surface layer physics physics

R1 MYJ/Eta similarity KF WDM 5 class Noah LSM Dudhia/RRTM
R2 MYJ/Eta similarity BMJ WDM 5 class Noah LSM Dudhia/RRTM
R3 YSU/MMS similarity KF WDM 5 class Noah LSM CAM/CAM

Australia) stretches thousands of kilometres from
Queensland, running the entire length of the eastern
coastline through NSW, and then into Victoria. The
mountain range runs almost north-south, intercept-
ing the prevailing westerly winds in winter and the
easterly winds in summer, resulting in more precipi-
tation to the west of the mountain range in winter
and to the east in summer, and acting as a major cli-
matic barrier separating southeast Australia into dis-
tinct climate zones.

Both domains used 30 vertical levels spaced closer
together in the planetary boundary layer. Simula-
tions were run from 1950-2009, and outputs (daily
accumulated precipitation and maximum and mini-
mum temperature) from the NARCIIM domain were
evaluated in this study.

The model simulations used 6 hourly boundary
conditions from the NNRP, which was the only avail-
able reanalysis to provide a record long enough for
this purpose. The NNRP is a combination of observa-
tions and a global atmosphere model output (Kalnay
et al. 1996). By using as many observations as possi-
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ble, the NNRP produces an estimate of the state of
the atmosphere that is as close to reality as possible.
Recently, a number of new reanalyses have been
produced that have generally improved on earlier re-
analyses like NNRP (e.g. Peha-Arancibia et al. 2013);
however, these reanalyses are not long enough to al-
low examination of inter-decadal variability, and
hence are not used here. A number of reanalyses
cover longer periods (e.g. ERA-20C), but they were
not available when the experiments started.

2.2. Australian Water Availability Project
(AWAP) data

The gridded daily precipitation totals, and maxi-
mum and minimum temperatures from the AWAP
(www.bom.gov.au/jsp/awap; Jones et al. 2009) are
used as observations in this study. This dataset is at a
resolution of 0.05° by 0.05° (approximately 5 km by
5 km) and is obtained by interpolating data from a
network of stations.
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The climate of southeast Australia varies from
desert climate in the west, to grassland climate in
the centre, to temperate climate on the southeast
coast and subtropical climate on the northeast
coast. The climate in this region is influenced by a
number of larger-scale climate drivers such as
ENSO, the Indian Ocean Dipole (IOD) and the
Southern Annular Mode (SAM). These climate
drivers interact over south-east Australia and pro-
duce a highly variable climate from year to year.
The mean seasonal precipitation, and maximum
and minimum temperatures for 1950-2009 are
shown in Fig. 2. There is a clear west—east gradient
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in precipitation for southeast Australia. Higher pre-
cipitation is observed on the eastern seaboard, with
more than 2000 mm annual precipitation, and less
than 200 mm annual precipitation in the northwest
part of the domain. The seasonality of precipitation
is obvious for this area with summer (DJF) domi-
nant precipitation in the north, winter (JJA) domi-
nant precipitation in the south and the Snowy
Mountains, and uniformly distributed seasonal pre-
cipitation in between. A northwest-southeast gra-
dient is present in the observed maximum and
minimum temperatures across the region. The tem-
perature is highest in the northwest corner (above
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Fig. 2. Australian Water Availability Project (AWAP) observations of precipitation (top row), maximum temperature (central
row) and minimum temperature (bottom row) averaged for each season: summer (DJF), autumn (MAM), winter (JJA) and
spring (SON). The grey spot on the northwest corner (top row) indicates a shortage of data
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40°C in summer) and lowest near the high-altitude
Snowy Mountains (< —4°C in winter).

Due to complex topography and large precipitation
and temperature variability in this region, the do-
main was divided into 11 climate zones (Fig. 3) based
on the characteristics of observed precipitation and
temperature, by using a regionalization method ba-
sed on Argteso et al. (2011), but modified to incorpo-
rate both temperature and precipitation in a single
set of climate divisions. Within the 11 climate zones,
Zones 5, 8 and 11 are zones with uniform precipita-
tion across seasons. Those to the north of the uniform
precipitation zones (Zones 1, 2, 3, 4, 9, 10) are sum-
mer-dominant precipitation zones, and the remain-
der (Zones 6 and 7) are winter-dominant precipita-
tion zones. The monthly distribution and annual
anomaly for precipitation and maximum and mini-
mum temperature were analysed for each of the 11
climate zones.

3. EVALUATION METHODOLOGY
The gridded data from AWAP were re-gridded to

the grid specifications of the WRF outputs, using in-
verse distance weighting. The evaluation was under-

taken on each WREF grid cell and on all WRF grid cells
within each climate zone.

In this study, simulations were assessed by quanti-
fying bias in magnitude and similarity in temporal
and spatial variability. On a grid cell basis, the simu-
lations were evaluated using the spatial and tempo-
ral correlation (R), mean bias, mean absolute error
(MAE) and root mean square error (RMSE). For each
climate zone, the zone-averaged rainfall and temper-
ature time series were used to analyse monthly distri-
butions and annual anomalies for precipitation and
maximum and minimum temperatures.

The probability density functions (PDFs) of daily
precipitation and maximum and minimum tempera-
tures were compared using the skill score defined by
Perkins et al. (2007). This skill score (Sscore) is simply
a measure of the common area between 2 PDFs, ex-
pressed as the empirical bins used to create the PDF:

N
Sscore =100x Y min(Zy, Z,) (1)
i=1

where N is the number of bins used to calculate the
PDF, Z, is the frequency of values in a given bin from
the model, and Z, is the frequency of values in a
given bin from the observations. A perfect simulated

PDF would lead to an Sscore value of 100.
Taylor diagrams (Taylor 2001) pro-
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vide a concise way of graphically
summarizing how well patterns of
simulations match observations in
terms of their spatial correlation,
their root mean square (RMS) differ-
ence and the ratio of their variations
(represented by their standard devi-
ations). These diagrams are espe-
cially useful in evaluating multiple
aspects of complex models or in
gauging the relative skill of many
different models.

Finally, a number of Expert Team
(ET) on Climate Change Detection
and Indices, ETCCDI (http://etccdi.
pacificclimate.org/list_27_indices.shtml)
were also calculated. These indices
are the number of days that exceed
10 mm (R10), the number of frost

nights (minimum temperature <0°C)
and the number of hot days (maximum

temperature >35°C). As 35°C is a

Fig. 3. Climate zones (n = 11) in the NARCIiM domain. See Section 2.2. in the

main text for details on zone characteristics

typical temperature for summer days
in southeast Australia, we used the
threshold of 35°C for hot days instead
of 25°C for summer days in this study.
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4. RESULTS

The results of the 3 WRF simulations were com-
pared against the AWAP observations of precipi-
tation and maximum and minimum temperatures,
and the evaluation results are presented here. First,
the ability of the RCM simulations to reproduce the
observed characteristics at a daily time scale was ex-
amined using the Sscore. The distribution of monthly
precipitation and temperature was then compared to
observations for each of the 11 climate zones. Next,
the RCMs were evaluated against observations at an-
nual and seasonal time scales, and their ability to re-
produce the inter-annual and decadal variability was
assessed. Finally, the capability of WRF in simulating
a few extreme indices was also evaluated.

4.1. Daily time scale

The accurate description of the precipitation and
temperature PDFs is essential for characterizing pre-

cipitation and temperature regimes. Here, daily
PDFs of the variables of interest are calculated and
compared, quantifying the similarity using the
Sscore of Perkins et al. (2007). All daily values of pre-
cipitation below 0.2 mm d~! were omitted, as rates
below this amount were not recorded in the observa-
tions. Perkins Sscores for precipitation and maximum
and minimum temperatures are shown in Fig. 4.

For the majority of the domain, WRF is able to cap-
ture the daily precipitation PDF, with Perkins Sscores
>90. The Sscores for the area west of the Great Divid-
ing Range is >96, which is much higher than Sscores
of various GCMs found by Perkins et al. (2007) and
higher than other previous RCM studies (Evans &
McCabe 2010, Argtieso et al. 2012). Lower scores can
be seen along the Great Dividing Range, which high-
lights the intrinsic difficulty of modelling precipita-
tion processes in topographically complex regions,
along with the higher uncertainty associated with
observations in these regions. It should be noted that,
even in these regions, the Sscore remains above 80,
indicating that most of the PDFs are simulated well.
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Fig. 4. Perkins skill
scores calculated for
precipitation (left col-
umn), maximum tem-
perature (central col-
umn) and minimum
temperature (right co-
lumn) from R1, R2 and
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Fig. 5. Monthly distribu-
tion of (a) precipitation
and (b) maximum (Tmax,
solid lines) and minimum
(Tmin, dashed lines) tem-
peratures for Zone 9 (see
Fig. 3 for zones). The 4
colours represent 1 obser-
vation (AWAP) and 3 sim-
ulations (R1, R2, R3)

Month

Within the 3 simulations, R2 and R3 are better than
R1, and R2 is slightly better than R3 for the southeast
coast.

The maps of the Perkins Sscores for maximum and
minimum temperatures illustrate that across the do-
main, WRF is able to capture the daily PDF for maxi-
mum and minimum temperatures well. Poorer scores
are observed for both maximum and minimum tem-
peratures in the southern part of the domain and the
northeast coast, especially for minimum temperature.
These scores are comparable to the findings of pre-
vious studies (Evans & McCabe 2010, Andrys et al.
2015). Among the 3 simulations, R3 gives better
results than the R1 and R2 simulations for tempera-
ture.

4.2. Monthly time scale
Monthly distributions of precipitation and maxi-

mum and minimum temperatures are analysed to
assess the ability of WRF to represent the annual

cycle. The zone-averaged monthly variables of inter-
est and their MAEs are calculated and compared for
each of the 11 climate zones. The MAE values of pre-
cipitation and temperature for Zone 9 are close to the
domain-averaged MAE values; therefore, the results
for this zone are shown in Fig. 5 as a typical example.

Zone 9 is a summer-dominant precipitation zone
with ~150 mm mo™" of precipitation in summer (DJF)
and ~50 mm mo™! in winter (JJA). The 3 simulations
capture the seasonality of precipitation well; how-
ever, they all overestimate monthly precipitation,
especially in warm months. Among the 3 simulations,
R2 performs the best; the MAE is ~20.3 % of observed
precipitation, which is smaller than 43.6 % for R1 and
56.8 % for R3.

For temperature, all simulations have a 2-3°C con-
stant cold bias for maximum temperature across all
seasons. The R3 simulation, with an MAE of 2.2°C,
performs slightly better than R1 (3.2°C) and R2
(2.8°C). A 1-2°C cold bias in minimum temperature
is observed in R1 and R2 simulations for all seasons.
R3 with an MAE of 0.9°C performs better than R1
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(1.7°C) and R2 (1.8°C), despite under-
estimating minimum temperature in
warm seasons and overestimating mini-
mum temperature in cold seasons.

Table 2. Mean absolute error (MAE) for monthly precipitation, maximum
temperature (Tmax) and minimum temperature (Tmin) in 3 simulations
(R1, R2, R3) for 11 climate zones (see Fig. 3 for zones). The smallest MAE

for each climate zone is highlighted in bold

The results for other climate zones are
. . . Zone MAE
provided in the Supplement, available Precipitation (%) Tmax (°C) Tmin (°C)

at www.int-res.com/articles/suppl/c067 R1 R2 R3 R1 R2 R3 R1 R2 R3

p099_supp.pdf. All 3 simulations are able
to capture the seasonality of precipita- 1 524 17.6  52.0 30 25 21 21 24 0.6
tion (Fig. S1 in the Supplement). How- 2 84.7 229 101.8 3.1 25 24 1.8 2.1 0.9
g : bp : 3 58.9 24.8 458 32 27 20 15 1.6 03
ever, R1 and R3 simulations are prone to 4 707 261 703 32 27 2.3 17 18 05
exaggerate the seasonality by over-esti- 5 386 11.6 29.7 32 28 22 24 28 05
mating precipitation in warm months, 6 241 125 227 25 24 1.8 24 28 07
s . i 7 19.7 18.5 14.6 23 23 1.6 20 25 13
espec1ally for summer-domlnant precipi- 8 301 128 223 33 29 21 23 27 08
tation zones. R2 1S better than R1 and R3 9 43.6 20.3 56.8 3.2 2.8 2.2 1.7 1.8 0.9
in matching precipitation seasonality. 10 51.5 26.2 655 32 27 2.1 1.3 14 0.9
The bias and MAE for precipitation are 11 539 334 616 31 26 1.8 1.0 1.1 0.4
larger in warm months for summer-dom- Mean 48.0 20.6 49.4 30 26 2.1 1.8 21 0.7

inant and uniform precipitation zones,
and in cold months for winter-dominant
precipitation zones. All simulations can capture the
seasonality of maximum and minimum temperatures
(Fig. S2). However, there is a 2-3°C constant cold
bias for maximum temperature, and 1-2°C cold bias
for minimum temperature, except for R3, which over-
estimates minimum temperature in cold months and
underestimates minimum temperature in warm
months. R3 has the least bias in temperature when
compared with R1 and R2.

The MAE for monthly precipitation and tempera-
ture for 11 climate zones are summarized in Table 2.
For precipitation, the domain-averaged MAE for the
R2 simulation is about 20 %, which is less than half
of the MAE for R1 and R3 simulations. The MAE for
R2 is about one-third to a half of the MAE for R1
and R3 for all climate zones, except for Zone 7,
where the MAE for R2 is similar to that for R1 and
R3. The domain-averaged MAEs for maximum and
minimum temperature are about 3, 2.6 and 2.1°C,
and 1.8, 2.1 and 0.7°C for R1, R2 and R3, respec-
tively. The MAE for maximum temperature is con-
sistently smaller for R3 compared to R1 and R2 for
all climate zones. The MAE for minimum tempera-
ture is much smaller (less than one-third of the max-
imum MAE for most climate zones) for R3 than R1
and R2.

4.3. Seasonal and annual time scales
Fig. 6 shows the biases of precipitation and maxi-

mum and minimum temperatures at annual time
scales (results at seasonal scales are shown in Figs.

S3-S5). The relative biases demonstrate how differ-
ently the 3 simulations behave.

The R2 simulation produces reasonably good re-
sults over most of the domain and throughout the
year, although some positive biases are observed
along the Great Dividing Range, particularly during
the autumn (MAM). In addition, the model also over-
estimates precipitation in the northwest of the do-
main, especially during the winter (JJA) and spring
(SON). The R2 performance is especially good for
summer (DJF) where the bias is below 25 % over the
majority of the region. As the northern part of the
domain is a summer-dominant precipitation zone, the
low bias in summer precipitation leads to low bias in
annual precipitation. R1 and R3 are similar in bias for
annual and seasonal precipitation. They generally
demonstrate good performance in precipitation for
most of the domain with a bias below 50 %, but sub-
stantially overestimate precipitation along the Great
Dividing Range and the northwest of the domain for
all seasons, especially in autumn (MAM) and spring
(SON), leading to larger annual deviations.

All simulations have a negative bias in annual and
seasonal maximum temperature across the domain.
The cold biases for the R3 simulation are generally
<3°C for annual and seasonal maximum tempera-
ture, which is smaller than those for R1 and R2. The
largest biases can be seen in winter (JJA) and the
smallest biases in summer (DJF), which are similar to
the results from Andrys et al. (2015).

R1 and R2 have cold biases for annual and seasonal
minimum temperature for most of the domain, with
larger biases (>4°C) in winter and spring relative to
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Fig. 6. Biases in an-
nual precipitation (top
row), maximum tem-
perature (central row)
and minimum tem-

Tmin (°C)

summer and autumn (2-3°C), especially in the south.
The bias for R3 is slightly different from R1 and R2; it
has a positive bias in the north to northwest of the
domain and negative bias elsewhere. Positive biases
occur across seasons, with larger values in spring
(SON) which cause the positive annual deviations in
those areas. The magnitude of biases for R3 is under
2°C, which is similar to the range reported by Andrys
et al. (2015). The magnitude of biases for R1 and R2 is
slightly larger than that for R3, although it is still
smaller than in some of the simulations by Katragkou
et al. (2015).

The Taylor diagram provides a different angle to
show a comparison between simulations and obser-

perature (bottom row)
for R1, R2 and R3
simulations

vations. Fig. 7 allows a succinct comparison of mod-
els using metrics of spatial correlation (R), RMS dif-
ference (the RMS differences between the dots and
‘REF' field are proportional to the their distance
apart, in the same units as standard deviation. See
Taylor 2001) and the variance ratio calculated for
annual and seasonal precipitation and maximum and
minimum temperatures. Better model performance is
indicated by values that are close to the x-axis and
near the line that is labelled ‘'REF’, which represents
a 1:1 variance ratio.

Overall, model performance indicates a very high
spatial agreement with observations (0.85 for precip-
itation and 0.95 for temperature,) with the highest
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correlation in summer (DJF) and lowest correlation in
winter (JJA) for precipitation and minimum tempera-
ture, and no substantial difference between seasons
for maximum temperature. The amplitude of vari-
ability is generally higher than the observations for
most seasonal precipitation and minimum tempera-
ture, with smallest variability in winter for precipita-
tion and largest variability in winter for minimum
temperature. Seasonal differences for maximum
temperature are not substantial. When comparing
the 3 simulations, R2 performs better in reproducing
precipitation and R3 for minimum temperature.
There is not much difference among the 3 simula-
tions with regards to how well they reproduce maxi-
mum temperature.

4.4. Inter-annual time scale

Plots of the precipitation, maximum and minimum
temperature annual anomalies for Zone 8 are shown
in Fig. 8 as an example. All simulations are able to
reproduce the observed precipitation annual anom-
alies, especially for wet periods in the late 1950s,
mid-1970s and 1990s and dry periods in the late
1960s, 1980s and 2000s. The temporal correlations of
annual precipitation anomalies are 0.47, 0.62 and
0.44 for R1, R2 and R3, respectively. For temperature,
all simulations capture the observed maximum and
minimum temperature annual anomalies better for
warm periods in the 1980s and 2000s and cold peri-
ods in the late 1950s and late 1970s. The temporal
correlations for temperature are higher than those for
precipitation, which are 0.68, 0.74 and 0.70, and 0.78,
0.76 and 0.77 for R1, R2 and R3 simulated maximum
temperature and minimum temperature, respective-
ly. There is a clear rising trend in observed tempera-
tures with about 0.02 and 0.01°C yr~! rate of increase
for maximum and minimum temperature, respec-
tively, which is well represented in all 3 simulations.
However, simulations tend to exaggerate the rate of
increase in minimum temperature.

The performance of the 3 simulations is not easily
judged from Fig. 8 alone. However, the R2 simulation
stands out with the least bias in long-term means and
the highest temporal anomaly correlation in precipi-

Fig. 7. Taylor diagrams for (a) precipitation, (b) maximum

temperature and (c¢) minimum temperature. The 3 simula-

tions (R1, R2, R3) are shown in different colours, and annual

means are labelled with a 1 and seasons are numbered from
2 to 5 for DJF, MAM, JJA and SON, respectively
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Fig. 8. Anomaly time series for (a) annual pre-

cipitation, (b) maximum temperature and (c)

minimum temperature for Zone 8 (see Fig. 3 for

zones) from 1950-2009. The 4 different colours

represent 1 observation (AWAP) and 3 simula-
tions (R1, R2, R3)
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Table 3. Temporal correlations (R) between simulations (R1, R2, R3) and
observations for anomalies in annual precipitation and maximum and
minimum temperatures for 11 climate zones (see Fig. 3 for zones). The

largest R value for each climate zone is highlighted in bold

Zone R
Precipitation Tmax Tmin

R1 R2 R3 R1 R2 R3 R1 R2 R3
1 0.40 0.66 0.44 0.66 0.67 0.61 0.83 0.76 0.83
2 0.34 0.71 047 0.63 0.62 0.59 0.76 0.69 0.80
3 0.41 0.51 041 0.55 0.65 0.60 0.75 0.78 0.81
4 0.47 0.51 0.48 0.52 0.58 0.58 0.70 0.74 0.80
5 0.45 0.68 0.46 0.68 0.75 0.67 0.80 0.76 0.78
6 0.42 046 0.59 0.70 0.75 0.73 0.79 0.80 0.78
7 0.61 0.56 0.65 0.79 0.82 0.83 0.86 0.86 0.86
8 0.47 0.62 0.44 0.68 0.74 0.70 0.78 0.76 0.77
9 0.29 0.38 0.33 0.64 0.60 0.64 0.75 0.78 0.77
10 0.44 0.56 0.45 0.68 0.72 0.68 0.76 0.77 0.75
11 0.42 0.51 0.41 0.68 0.73 0.68 0.79 0.77 0.79
Mean 0.43 0.56 0.47 0.65 0.69 0.66 0.78 0.77 0.79

tation, and the R3 simulation is superior
with the least bias in the long-term tem-
perature mean.

The results for other zones are provided
in the Supplement (Figs. S6-S8). The
temporal correlations for other zones are
summarized in Table 3. The R2 simulation
is better correlated to observed precipita-
tion temporally and shows less bias in
simulating long-term precipitation means
for most of the zones, except Zones 6 and
7 that are winter-dominant precipitation
zones. The R3 simulation shows the least
bias in long-term temperature means and
highest temporal correlation to observed
minimum-temperature anomalies. How-
ever, the R3 temporal correlations to ob-
served maximum-temperature anomalies
are not the best among the 3 simulations.
The temporal correlations for temperature
are higher than those for precipitation,
which suggests that WRF performs better
in capturing long-term variability of tem-
perature than precipitation.

4.5. Decadal time scale

The biases at decadal time scales are
presented in Figs. S9-S11. For precipita-
tion, the simulations perform well, with
<50% in bias for most of the regions
across all decades, with the exception of
the northwest part of the domain and
along the Great Dividing Range, which
are overestimated. The 1950s and 1970s
are wet decades for southeast Australia;
during these periods, the biases are
smaller than other time periods. Within
the 3 simulations, R2 out-performs R1
and R3 by having the least bias in the
northwest of the domain and along the
Great Dividing Range.

There is a larger bias in maximum tem-
perature for all decades. The R1 simula-
tion has the largest bias (3-4°C cooler
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Fig. 9. Statistical results for decadal (a) mean precipitation, (b) maximum tem-
perature and (c) minimum temperature based on annual and 4-season data.
The block columns represent results for 60 yr means and error bars represent
the inter-decade range (minimum to maximum). Blue, red and green are for
R1, R2 and R3 simulations, respectively. Bias, mean absolute error (MAE) and
root mean square error (RMSE) were divided by 20, 3 and 2, respectively, for
precipitation, maximum temperature and minimum temperature, to allow
them to be plotted in the same graph

than the observations), followed by R2 (2-3°C bias).
R3 has the least negative bias (1-2°C).

The bias in minimum temperature shows interest-
ing patterns. It is generally smaller in the north of the

domain and coastal areas than else-
where. R1 and R2 have a negative bias
while R3 has a positive bias in the
north and a negative bias in the south
of the domain. The magnitude of bias
is smaller for R3 than for R1 and R2.

The decadal statistical results for an-
nual and seasonal precipitation and
maximum and minimum temperatures
are presented in Fig. 9. The columns
represent the results for the 60 yr
means of precipitation and tempera-
ture, and error bars show the inter-
decade range (minimum to maxi-
mum).

The results show good spatial corre-
lations (>0.9) for long-term mean pre-
cipitation with some seasonal varia-
tion (smaller value in winter: 0.75). R2
is slightly better than R1 and R3 for
most seasons. All simulations have a
positive bias in annual and seasonal
precipitation, except for R2 simulated
winter precipitation. The magnitude
of bias is much smaller for R2 than R1
and R3 for most seasons, with no clear
seasonal change. However, a larger
bias of ca. 40 mm mo~! can be seen in
summer (DJF) and spring (SON) for R1
and R3. The same seasonality for the
MAE and RMSE is also observed for
R1 and R3. The magnitudes of the
MAE and RSME are smaller for R2
than R1 and R3 for annual and sea-
sonal precipitation. There is not much
difference in inter-decade range of R
for the 3 simulations, but the range of
the bias, MAE and RMSE for R2 is
consistently smaller than R1 and R3
for annual and seasonal precipitation.

The spatial correlations of maximum
and minimum temperatures are better
than that of precipitation, even if there
is a similar seasonal change in R for
minimum temperature with low val-
ues in winter. There is a consistent
negative bias in maximum and mini-
mum temperatures, with much
smaller bias for R3 than R1 and R2,

which have a 2-3°C cold bias for maximum tempera-
ture and a 1-2°C for minimum temperature. The
MAE and RMSE values indicate a range similar to
that for bias. Among the 3 simulations, R3 has much
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smaller systematic bias than R1 and R2 for annual
and seasonal temperatures.

4.6. ETCCDI

A number of ETCCDI are examined, including:
number of days with daily precipitation >10 mm
(R10), number of hot days and number of frost days
(FD). The results are shown in Fig. 10.

Results for the R10 index indicate that the general
gradient from east to west and 2 centres on the north-

25°S

30°

35°

east NSW coast and Snowy Mountains are accurately
captured by all simulations. However, all simulations
overestimate along the Great Dividing Range, espe-
cially on the northeast NSW coast. R1 and R3 simula-
tions also overestimate days with daily precipitation
>10 mm in the northern part of the domain, which
implies that the rainfall bias is mainly caused by
larger events. The bias from the R2 simulation is far
smaller than the other two simulations.

The cold bias in the temperature simulations is re-
flected in the hot day results. The spatial area with
<10 hot days is slightly overestimated in the simula-

25°S

30°

35°

25°S

30°

35°

Fig. 10. Days with daily precipitation >10 mm (top row), maximum temperature >35°C (centre row) and minimum temperature
<0°C (bottom row) calculated from observations (obs) and 3 simulations (R1, R2, R3) from 1950-2009
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tions. However, the northwest to southeast gradient is
nearly perfectly represented by all simulations, al-
though the simulations underestimate the number of
hot days in the northwest of the domain. R2 and R3
simulations give better results than the R1 simulation.

The FD index results show that there are >40 frost
days a year along the Great Dividing Range, with the
longest period in the Snowy Mountains where the
frost period exceeds 5 mo. This distinctive feature is
fully characterized in all 3 simulations. Nevertheless,
the simulations, especially R1 and R2, overestimate
the frost period in the southern part of the domain.
All 3 simulations tend to slightly underestimate the
frost period in the northern part of the domain, which
is particularly true for R3.

5. DISCUSSION

All 3 simulations reproduce precipitation and tem-
perature reasonably well at different time scales
(daily, monthly, seasonal, inter-annual and decadal)
for the domain of interest. However, there is a posi-
tive bias in precipitation and a negative bias in max-
imum and minimum temperatures.

As the precipitation in the study area is dominated
by convective rainfall during warm months, it was
expected that the simulated precipitation is sensitive
to physics scheme combinations (Flaounas et al.
2011, Crétat et al. 2012). As the main focus of this
study was to assess the capability of WRF to simulate
regional climate for southeast Australia, the design of
the experiments made it difficult to analyse the
impact of the physics scheme on modelled precipi-
tation. However, the influence of the physics scheme
selection can still be observed in the modelling
results. R2 has the same physics scheme options as
R1 except for the cumulus scheme (CU). The Betts-
Miller-Janjic (BMJ) scheme is used in R2, while the
Kain-Fritsch (KF) scheme is used in R1. The differ-
ence between R1 and R2 simulated precipitation
shows that the BMJ scheme is better than the KF
scheme in terms of monthly biases and absolute
errors and also regarding the daily PDF. This sug-
gests that the KF scheme is less suitable for long-
term climate simulations for southeast Australia. This
result is surprising, as it contradicts the findings from
previous studies (Cohen 2002, Kerkhoven et al. 2006,
Ji et al. 2014, Pennelly et al. 2014, Gilmore et al. in
press) that considered the KF scheme as a good
option for capturing major precipitation centres in
short-term weather simulations. These studies com-
pared different CU schemes in simulating convective

rainfall and concluded that the KF scheme is well
suited for mesoscale model runs, as its assumption
about the consumption of convective available
potential energy is appropriate for mesoscale time
and space scales. The scheme has a realistic convec-
tive trigger, and it considers entrainment and de-
trainment more realistically than other schemes.
However, some of the studies have also pointed out
that although the KF scheme simulates heavy and
moderate phases of rainfall well, it has a tendency to
over-estimate light rainfall, which has little effect on
short-term simulations, but can be problematic for
long-term climatic applications (Kerkhoven et al.
2006). In our study, the 2 RCMs that used the KF
cumulus scheme (R1 and R3) both overestimated
light rainfall, which contributed to the overall overes-
timation of annual rainfall for the region, especially
in the northwest domain where the annual rainfall is
low (<200 mm yr'!). Alapaty et al. (2012) also re-
ported the excessive precipitation simulated by the
WRF model, and suggested that by including sub-
grid-scale cloud-radiation interactions in the KF
scheme, the overestimated precipitation can be
largely reduced in both weather (short-term) and cli-
matic (long-term) simulations.

The simulations generally show a consistent cold
bias, especially for maximum temperature; the cold
bias is much larger in magnitude than the difference
among the 3 simulations. This indicates that the main
source of the bias is not the choice of planetary
boundary layer (PBL), CU, microphysics (MP) and
radiation (RA). Evans & McCabe (2010) found that
NNRP has a cold bias for southeast Australia. Kala et
al. (2015) also noted that NNRP was not as accurate
as ERA-I data, with a larger bias in temperature. It is
reasonable to deduce that, at least partially, the sys-
tematic bias in temperature simulations might be
inherited from the driving data, although further
work is required to confirm this hypothesis.

Zeng et al. (2015) compared 4 land surface
schemes (LSS) in the WRF model to simulate high-
temperature events. They found that the surface air
temperature is sensitive to LSS and lead time. Their
analysis showed that Noah LSS generally under-
estimates the surface air temperature, and the sys-
tematic simulation error increases with lead time.
Garcia-Diez et al. (2015) suggested that the Noah
scheme overestimates total soil moisture content.
The excess soil moisture influences the energy
partitioning, shifting it towards too much evapora-
tion, and making it difficult for the occurrence of a
‘dry regime' where evapotranspiration is limited
by soil moisture instead of incoming energy.
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Therefore Noah LSS, which is used in all 3 of our
simulations, is another source of the cold bias
shown in the temperature.

The large difference in modelled temperature
between R1 and R3 simulations suggests that the
modelled temperature is sensitive to the choice of
PBL and RA schemes since they use the same CU and
MP schemes but different PBL and RA schemes. This
is consistent to the findings from Evans et al. (2012)
and Kala et al. (2015).

ETCCDI indices are good indictors for assessing
the capability of WRF to simulate regional climate
variability. We only presented a few indices here to
demonstrate the capability of WRF. The results do
show that WRF has skill in simulating regional cli-
mate variability and moderate extremes.

The results from this study provide end-users
ground for confidence in the WRF model for long-
term regional climate simulation in southeast Aus-
tralia. The NARCIM project used 4 GCMs to drive 3
RCMs (total of 12 ensemble members) for 3 time peri-
ods (1990-2009, 2020-2039, 2060—-2079). The results
from the GCM-driven R2 simulations should be more
trustworthy in terms of precipitation relative to other
simulations in the ensemble. Similarly, minimum
temperatures for R3 simulations are likely to be bet-
ter than those from other simulations.

6. CONCLUSIONS

This paper presents an evaluation of 3 RCM simu-
lations over southeast Australia for a 60 yr period
(1950-2009) to examine the ability of the WRF model
to accurately represent the climatology of the region.

At the daily time scale, the daily precipitation PDF
is reproduced with good skill throughout the domain,
with slightly poorer skill along the Great Dividing
Range. In terms of maximum and minimum tempera-
tures, the overall shape of the temperature PDF is
good throughout the domain, with some poorer per-
formance found in southern Victoria. Among the 3
simulations, R2 is the best in capturing daily precipi-
tation, and R3 is the most skilled at simulating mini-
mum temperature.

At the monthly time scale, the simulations tend to
overestimate precipitation in warm months and sys-
tematically underestimate temperature. However,
the simulations capture the annual cycles rather well.
R2 and R3 simulations performed best in simulating
precipitation and temperature, respectively.

At seasonal time scales, the simulations generally
perform well but tend to overestimate precipitation

along the Great Dividing Range and in the northwest
of the domain for all seasons. In general, better pre-
cipitation results are generated for winter compared
to other seasons. The simulations capture the spatial
pattern of maximum and minimum temperatures rel-
atively well despite a 2-3°C cold bias for maximum
temperature and 1-2°C cold bias for minimum tem-
perature. The performance of the 3 simulations does
not differ much when simulating maximum tempera-
tures. However, R2 and R3 are better in performance
when simulating precipitation and minimum temper-
ature individually.

The simulations are able to reproduce the inter-
annual variability accurately, especially for the major
wet/dry and hot/cold periods. R2 has the highest
temporal correlations for annual precipitation ano-
malies and the least bias in long-term means for pre-
cipitation, and R3 has the smallest bias in long-term
means for temperature.

The ability of WRF to capture the variability in pre-
cipitation and temperature at decadal scales is also
evaluated. Generally, WRF performs well in repro-
ducing the spatial patterns of precipitation and tem-
perature, but bias in the amount of precipitation and
temperature is substantial across the domain. R2
and R3 simulations are superior in reproducing
decadal variability in precipitation and temperature
separately.

The differences in precipitation and temperature
between the simulations indicated that the CU
scheme is critical to precipitation simulations, and
PBL and RA schemes are more important in temper-
ature simulations.

Overall, the simulations plausibly represent the
spatial and temporal patterns of observations. How-
ever, it is evident that there is overestimation of pre-
cipitation along the Great Dividing Range and in the
northwest of the domain, and systematic underesti-
mation of temperature across the domain. The R2
simulation is the most skilled at reproducing precipi-
tation and R3 at reproducing temperature at varying
time scales.
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