Bibliographie complète
The role of aerosol in altering North Atlantic atmospheric circulation in winter and its impact on air quality
Type de ressource
Auteurs/contributeurs
- Pausata, F. S. R. (Auteur)
- Gaetani, M. (Auteur)
- Messori, G. (Auteur)
- Kloster, S. (Auteur)
- Dentener, F. J. (Auteur)
Titre
The role of aerosol in altering North Atlantic atmospheric circulation in winter and its impact on air quality
Résumé
Abstract. Numerical model scenarios of future climate depict a global increase in temperatures and changing precipitation patterns, primarily driven by increasing greenhouse gas (GHG) concentrations. Aerosol particles also play an important role by altering the Earth's radiation budget and consequently surface temperature. Here, we use the general circulation aerosol model ECHAM5-HAM, coupled to a mixed layer ocean model, to investigate the impacts of future air pollution mitigation strategies in Europe on winter atmospheric circulation over the North Atlantic. We analyse the extreme case of a maximum feasible end-of-pipe reduction of aerosols in the near future (2030), in combination with increasing GHG concentrations. Our results show a more positive North Atlantic Oscillation (NAO) mean state by 2030, together with a significant eastward shift of the southern centre of action of sea-level pressure (SLP). Moreover, we show a significantly increased blocking frequency over the western Mediterranean. By separating the impacts of aerosols and GHGs, our study suggests that future aerosol abatement may be the primary driver of both the eastward shift in the southern SLP centre of action and the increased blocking frequency over the western Mediterranean. These concomitant modifications of the atmospheric circulation over the Euro-Atlantic sector lead to more stagnant weather conditions that favour air pollutant accumulation, especially in the western Mediterranean sector. Changes in atmospheric circulation should therefore be included in future air pollution mitigation assessments. The indicator-based evaluation of atmospheric circulation changes presented in this work will allow an objective first-order assessment of the role of changes in wintertime circulation on future air quality in other climate model simulations.
Publication
Atmospheric Chemistry and Physics
Volume
15
Numéro
4
Pages
1725-1743
Date
2015-02-19
Abrév. de revue
Atmos. Chem. Phys.
Langue
en
ISSN
1680-7324
Consulté le
07/11/2024 19:35
Catalogue de bibl.
DOI.org (Crossref)
Autorisations
Référence
Pausata, F. S. R., Gaetani, M., Messori, G., Kloster, S., & Dentener, F. J. (2015). The role of aerosol in altering North Atlantic atmospheric circulation in winter and its impact on air quality. Atmospheric Chemistry and Physics, 15(4), 1725–1743. https://doi.org/10.5194/acp-15-1725-2015
Auteur·e·s
Lien vers cette notice