Bibliographie complète
Application of machine-learning methods in forest ecology: recent progress and future challenges
Type de ressource
Auteurs/contributeurs
- Liu, Zelin (Auteur)
- Peng, Changhui (Auteur)
- Work, Timothy (Auteur)
- Candau, Jean-Noel (Auteur)
- DesRochers, Annie (Auteur)
- Kneeshaw, Daniel (Auteur)
Titre
Application of machine-learning methods in forest ecology: recent progress and future challenges
Résumé
Machine learning, an important branch of artificial intelligence, is increasingly being applied in sciences such as forest ecology. Here, we review and discuss three commonly used methods of machine learning (ML) including decision-tree learning, artificial neural network, and support vector machine and their applications in four different aspects of forest ecology over the last decade. These applications include: (i) species distribution models, (ii) carbon cycles, (iii) hazard assessment and prediction, and (iv) other applications in forest management. Although ML approaches are useful for classification, modeling, and prediction in forest ecology research, further expansion of ML technologies is limited by the lack of suitable data and the relatively “higher threshold” of applications. However, the combined use of multiple algorithms and improved communication and cooperation between ecological researchers and ML developers still present major challenges and tasks for the betterment of future ecological research. We suggest that future applications of ML in ecology will become an increasingly attractive tool for ecologists in the face of “big data” and that ecologists will gain access to more types of data such as sound and video in the near future, possibly opening new avenues of research in forest ecology.
Publication
Environmental Reviews
Volume
26
Numéro
4
Pages
339-350
Date
12/2018
Abrév. de revue
Environ. Rev.
Langue
en
ISSN
1181-8700, 1208-6053
Titre abrégé
Application of machine-learning methods in forest ecology
Consulté le
14/11/2024 21:43
Catalogue de bibl.
DOI.org (Crossref)
Référence
Liu, Z., Peng, C., Work, T., Candau, J.-N., DesRochers, A., & Kneeshaw, D. (2018). Application of machine-learning methods in forest ecology: recent progress and future challenges. Environmental Reviews, 26(4), 339–350. https://doi.org/10.1139/er-2018-0034
Auteur·e·s
Lien vers cette notice