Votre recherche
Résultats 2 ressources
-
Abstract Biome‐specific soil respiration (Rs) has important yet different roles in both the carbon cycle and climate change from regional to global scales. To date, no comparable studies related to global biome‐specific Rs have been conducted applying comprehensive global Rs databases. The goal of this study was to develop artificial neural network ( ANN ) models capable of spatially estimating global Rs and to evaluate the effects of interannual climate variations on 10 major biomes. We used 1976 annual Rs field records extracted from global Rs literature to train and test the ANN models. We determined that the best ANN model for predicting biome‐specific global annual Rs was the one that applied mean annual temperature ( MAT ), mean annual precipitation ( MAP ), and biome type as inputs ( r 2 = 0.60). The ANN models reported an average global Rs of 93.3 ± 6.1 Pg C yr −1 from 1960 to 2012 and an increasing trend in average global annual Rs of 0.04 Pg C yr −1 . Estimated annual Rs increased with increases in MAT and MAP in cropland, boreal forest, grassland, shrubland, and wetland biomes. Additionally, estimated annual Rs decreased with increases in MAT and increased with increases in MAP in desert and tundra biomes, and only significantly decreased with increases in MAT ( r 2 = 0.87) in the savannah biome. The developed biome‐specific global Rs database for global land and soil carbon models will aid in understanding the mechanisms underlying variations in soil carbon dynamics and in quantifying uncertainty in the global soil carbon cycle. , Key Points Predict biome‐specific global soil respiration from 1960 to 2012 using an artificial neural network model Prediction determined an average global soil respiration of 93.3 ± 6.1 Pg C yr −1 and an increasing trend of 0.04 Pg C yr −1 The 10 biome‐specific soil respiration estimates made it possible to trace different responses to global climate change in each biome
-
Abstract Intense grazing may lead to grassland degradation on the Qinghai-Tibetan Plateau, but it is difficult to predict where this will occur and to quantify it. Based on a process-based ecosystem model, we define a productivity-based stocking rate threshold that induces extreme grassland degradation to assess whether and where the current grazing activity in the region is sustainable. We find that the current stocking rate is below the threshold in ~80% of grassland areas, but in 55% of these grasslands the stocking rate exceeds half the threshold. According to our model projections, positive effects of climate change including elevated CO 2 can partly offset negative effects of grazing across nearly 70% of grasslands on the Plateau, but only in areas below the stocking rate threshold. Our analysis suggests that stocking rate that does not exceed 60% (within 50% to 70%) of the threshold may balance human demands with grassland protection in the face of climate change.