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A B S T R A C T   

The occurrence of very high temperatures (hot extremes) is often linked with negative impacts in human health, 
natural ecosystems and the economy (e.g., energy, water supply and agriculture). Studies have invariably shown 
that the intensity and frequency of hot extremes will increase in the future thus increasing their associated risks. 
While much progress has been made in quantifying and understanding hot temperature extremes and their future 
changes, there are still open questions. This paper focusses on the sources of hot extremes and their changes by 
applying a simple and unambiguous methodology that describes daily hot extremes as the superposition of four 
well known physical terms that include information on the annual mean temperature, the amplitude of the 
annual cycle, the diurnal temperature range and the local temperature anomaly on the day of the extreme. The 
methodology was applied to 30-year daily temperature records from 6 observation-based datasets and 31 at-
mosphere-ocean global climate models from the Coupled Model Intercomparison Project Phase 5 (CMIP5). The 
comparison between observed and simulated hot extremes shows a remarkably consistent picture where most 
CMIP5 models overestimate the term describing the local temperature extreme anomaly over most regions of the 
globe regardless of the observed dataset considered. Simultaneously, CMIP5 models show a systematic cold bias 
in the annual mean temperature and in the diurnal temperature range terms leading to substantial error 
compensation over some regions. This prompted us to define a new error estimator as the sum of errors in in-
dividual terms that appears to be much more effective at characterising model’s performance compared to the 
traditional bias estimator. The assessment of future changes in hot extremes shows that changes are dominated 
by changes in annual mean temperatures with varying contributions from the other terms that strongly depend 
on the specific region being considered. Western Europe appears as a hot spot for extreme temperature changes 
(increases of e8 ∘C by the end of the century) due to significant contributions from all decomposition terms 
including the summer mean anomaly, the diurnal temperature range and the daily extreme anomaly. Tropical 
South America also appears as a hot spot for extreme temperature changes (increases of e7 ∘C) largely due to an 
increase in the daily extreme anomaly term (explaining about 30% of the full change) making this region one of 
the most sensitive regions in the world in terms of hot extremes. The analysis reveals that the separation of future 
changes according to terms describing mean, variability and tails is very sensitive to the specific way the mean 
component is defined including assumptions about stationarity.   

1. Introduction 

Record breaking temperatures and their underlying warm spells and 
heatwaves often have substantial social and environmental impacts 
including large economic losses, excessive mortality and severe envi-
ronmental effects, as observed for example over Europe in summer 2003 
(Garcia-Herrera et al., 2010). 

For this reason, a great deal of attention has been devoted to quan-
tifying and understanding current hot extremes and their future 
changes. Studies include the analysis of changes in heat waves (Sch€ar 
et al., 2004; Imada et al., 2014; Perkins et al., 2014), high percentiles of 
daily mean temperature (Kharin et al., 2013; Sillmann et al., 2013) and 
record breaking temperatures (Meehl et al., 2009; Coumou and Rahm-
storf, 2012; Bador et al., 2016, 2017). Regardless of the region and the 
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season considered, these studies have shown that the intensity and fre-
quency of hot extremes will increase by the end of the 21st century 
largely controlled by the emission scenario considered (e.g., Field et al., 
2012; Collins et al., 2013, and references therein). 

Generally, daily extremes result from the superposition of different 
physical processes operating and possibly interacting with each other at 
various temporal scales including subdaily, daily, seasonal and decadal 
time scales (Sillmann et al., 2017). In mid and high latitudes, daily hot 
extremes require persistent synoptic patterns (e.g., atmospheric block-
ing patterns) that favour positive anomalies of warm advection and 
shortwave incoming radiation over multi-day periods leading to warm 
spells and heatwaves (e.g., Miralles et al., 2014). At seasonal time scales, 
daily hot extremes co-vary with seasonal mean temperatures which are 
largely controlled by the incoming solar radiation, the elevation and the 
proximity to the ocean and can be influenced by low-frequency modes of 
variability such as El Ni~no Southern Oscillation and the North Atlantic 
Oscillation (e.g., Lewis and King, 2015). At decadal time scales, daily hot 
extremes co-vary with long-term mean temperatures which are affected 
by changes in greenhouse gas concentrations, changes in the general 
circulation and a number of feedback processes (Orlowsky and Sen-
eviratne, 2012; Rhein et al., 2013; Seneviratne et al., 2016). Surface 
conditions such as the amount of soil moisture have been shown to affect 
temperatures at daily, seasonal and decadal time scales (Fischer et al., 
2012; Seneviratne et al., 2010; Hirschi et al., 2011; Vogel et al., 2017; 
Donat et al., 2017, 2018). Similarly, the presence/absence of snow and 
ice at the surface in high latitudes and high elevation areas has been 
shown to play a key role in determining near surface temperatures and 
their future changes (e.g., Chen et al., 2017; Pithan and Mauritsen, 
2014). 

Previous studies have shown that future changes in hot extremes 
show a strong spatial dependence (e.g., Kharin et al., 2013; Sillmann 
et al., 2013; Seneviratne et al., 2010; Hirschi et al., 2011; Bador et al., 
2016; Vogel et al., 2017; Donat et al., 2017, 2018) and a quasi-linear 
relation with global mean temperature changes (Seneviratne et al., 
2016). The largest changes in hot extremes have been projected to occur 
in some mid-latitude regions with changes attaining about 9 C∘ in 
western Europe by 2081–2100 according to the RCP8.5 scenario of 
concentrations (Collins et al., 2013). With the aim of quantifying the 
way future changes might occur, some studies focused on looking into 
whether future changes only arise due to a shift in the daily temperature 
distribution (change in the mean) and changes in other moments of the 
distribution (Kodra and Ganguly, 2014; Fischer and Sch€ar, 2009; Fischer 
et al., 2012; Della-Marta et al., 2007; Lewis and King, 2017; Wehner 
et al., 2018; Seneviratne et al., 2016). Della-Marta et al. (2007) analysed 
historical trends of in situ observations in western Europe and found that 
the increases in the variance of daily summer maximum temperature 
could explain up to 40% of the changes in hot days over the period 
1880–2005. Fischer and Sch€ar (2009) analysed an ensemble of RCM 
simulation over Europe and found a consistent increase in the standard 
deviation of daily mean temperatures over south-central Europe in 
agreement with other studies (Sch€ar et al., 2004; Schoetter et al., 2015; 
Donat et al., 2017). 

Argüeso et al. (2016) and Lau and Nath (2012, 2014) separated 
future changes in extremes according to the mean and the varia-
bility/tails by comparing extremes from a future simulation with those 
obtained from a hypothetical scenario derived by artificially ‘‘shifting’’ 
the historical distribution using the long-term future mean change. Lau 
and Nath (2012, 2014) found that projected increases in heatwaves 
duration and frequency can be accounted for by the shift in the clima-
tological mean in both North America and Europe. At the global scale, 
Argüeso et al. (2016) showed that in most mid- and high-latitude areas, 
mean temperature changes (i.e., a shift in the distribution) largely 
dominate changes in future heat waves with only a few regions showing 
some consistent contribution from an increased variability. In a recent 
study, Donat et al. (2017) calculated the ratio between the future change 
in extremes and its corresponding mean change thus identifying regions 

where extremes are projected to warm faster/slower than the long-term 
mean. They found hot spots for temperature changes in Europe, North 
America, South America, and Southeast China. 

Some of the apparent disagreements in the role of mean, variability, 
and tails in the above-mentioned studies are caused by the way the 
‘‘mean’’ term is defined. A number of studies assume that mean changes 
are given by changes in annual mean temperatures (e.g., Donat et al., 
2017; Seneviratne et al., 2016) while others take into account the sea-
sonality of these changes (e.g., Lau and Nath, 2012, 2014; Argüeso et al., 
2016; Wehner et al., 2018). Most studies assume that mean changes are 
given by changes in the daily mean temperature thus effectively dis-
carding possible effects of changes in the diurnal temperature range that 
have been shown to be substantial in some regions (e.g., Lindvall and 
Svensson, 2015). Similarly, the use of the long-term mean to charac-
terise a non-stationary period can be misleading as, if changes are 
monotonous through the period (as is the case for mean temperatures), 
the mean temperature differs at the beginning and the end of the period. 

In this article we present a framework that allows to quantify in a 
consistent manner the effect that processes occurring at different tem-
poral scales have on hot extremes. The framework is based on a simple 
decomposition that includes information from long-term local means, 
the seasonality, the diurnal temperature range and the local temperature 
anomaly of the day of the extreme. In addition, we assess and discuss 
some artifacts that arise when decomposing extremes due to historical 
and future climate periods being non-stationary. The decomposition is 
applied to historical and future daily temperature time series derived 
from four observed gridded datasets, two reanalyses and 31 climate 
models. Present climate results allow to disentangle climate model 
biases and to identify those terms that are at the origin of major errors. 
Quantifying the effect of different terms in future changes of tempera-
ture extremes helps to identify whether the changes result simply from a 
general trend in global mean temperatures or from more complex 
changes associated with other local processes. We focus on hot extremes 
as defined by the absolute 30-year daily maximum temperatures, but in 
order to ensure the robustness of the analysis we also consider less 
extreme quantities such as the 95th and 99th percentile of daily 
maximum temperatures. 

The paper is organised as follows. The next section presents the data 
(Section 2.1) and discusses in detail the decomposition method (Section 
2.2) and the comparison approach (Section 2.3). Section 3.1 shows re-
sults for the observed extremes while Sections 3.2 and 3.3 assess biases 
and errors in CMIP5 models including a discussion about the compen-
sation of errors in models. Future changes in hot extremes are presented 
Section 3.4 and Section 3.5 discusses the effects of dealing with non- 
stationary time series. A broad discussion of the results is presented in 
Section 4 while conclusions are given in Section 5. 

2. Data and methods 

2.1. Observed and simulated temperature data 

Four land-only daily minimum and maximum temperature gridded 
datasets are used in this study. The BEST dataset is a product from the 
Berkeley Earth group (Rohde et al., 2013a, b) and consists on a homo-
genised gridded 1∘ latitude by 1∘ longitude daily temperature for 
land-only grid points. It was constructed by combining the interpolated 
daily temperature anomalies from individual stations with a monthly 
gridded dataset that contains substantially more records (nearly 37000 
records during the period 1880–2011). The CPC dataset has been 
developed by the Climate Prediction Center (CPC) from the National 
Oceanic and Atmospheric Administration (NOAA) and provides daily 
minimum and maximum temperatures over a 0.5∘ latitude-longitude 
grid mesh for the period from 1979 to present. The HadGHCND data-
set (Caesar et al., 2006; Donat et al., 2013a) provides daily minimum 
and maximum temperatures over a 2.5∘ latitude by 3.75∘ longitude for 
the period from 1950 to 2014. HadGHCND contains around 3000 
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quality-controlled stations with good coverage in North America, 
Europe, Japan, China and Australia although quite poor in most of the 
Southern Hemisphere including Africa and South America. Finally, 
monthly minimum and maximum temperature from version 3.2.1 of the 
Climate Research Unit (CRU-TS321) dataset (Harris et al., 2014) has 
been used as an alternative dataset to calculate those terms only 
involving long-term mean quantities. 

In addition, daily minimum and maximum temperatures from the 
two latest reanalyses developed by the European Centre for Medium- 
Range Weather Forecasts are also included in this study. The ERA- 
Interim (ERAI) reanalysis (Dee et al., 2011) has been used in a num-
ber of studies looking at temperature extremes (e.g., Kharin et al., 2013; 
Sillmann et al., 2013). ERAI uses a T255 horizontal resolution, which 
corresponds to approximately 79-km spacing on a reduced Gaussian grid 
and is available from 1 January 1979 onward. The ERA5 reanalysis 
(Hersbach et al., 2018) has an enhanced horizontal resolution of 31 km 
and is also available over the whole globe from January 1979 onwards. 

Daily minimum and maximum temperatures from 31 Atmosphere- 
Ocean Global Climate Models from the Coupled Model Intercompar-
ison Project Phase 5 (CMIP5, Taylor et al. (2012) are used in this study 
(Table S1) in Supplementary Information). Results presented here are 
based on a single realisation from the historical (1971–2000, HIST) and 
the representative concentration pathway (RCP) 8.5 scenario 
(2071–2100, RCP8.5) experiments for each model. RCP8.5 represents a 
high emission scenario of greenhouse gases. 

2.2. 30-Year absolute daily maximum temperatures decomposition 

For any given day d, the daily maximum temperature TX can be 
expressed as 

TXðdÞ¼TmðdÞ þ
DTRðdÞ

2
; (1)  

where the first term in the right-hand side corresponds to the daily mean 
temperature and the second term is the diurnal temperature range 
(DTR), defined as TX � TN with TN the daily minimum temperature. Eq. 
(1) is an identity only if the term TmðdÞ is defined as ðTN þ TXÞ= 2. It 
should be noted however that the actual mean temperature of a given 
day might differ from ðTNþTXÞ=2 because the diurnal temperature 
variation can be asymmetric. Neglecting the effect of the diurnal tem-
perature asymmetry is common in climate studies including observa-
tions for which only TN and TX are available. 

From the time series in Eq. (1) we can calculate hot temperature 
extremes. For the sake of simplicity, in what follows we will consider 
TXx to be the absolute maximum of TXðdÞ over the whole 30-year period: 

TXx¼ TmðdxÞ þ
DTRðdxÞ

2
(2)  

where dx denotes the day when the extreme occurs. Given that the 
temperature in a given day can be decomposed in the long-term mean ðÞ
and a daily anomaly ðÞ’ we have: 

TXx¼ TmðdxÞþ
DTRðdxÞ

2
;

¼ Tmþ
DTR

2
þ Tm’ðdxÞþ

DTR’ðdxÞ

2
; (3) 

The first two terms of the decomposition contain long-term mean 
values and includes the daily mean temperature and the mean DTR. The 
second two terms, denoted as primed quantities, include the specific 
temperature anomalies of the day dx when the absolute maximum occurs 
(i.e., denoted as daily extreme anomaly terms). 

In most places, with the exception of some tropical regions, absolute 
maximum temperatures occur during the summer season. This implies 
that the actual distribution of daily absolute maximum temperatures is 
better defined by the distribution of daily maximum temperatures over 

the summer season (see also Wehner et al., 2018). In order to highlight 
the impact of using summer months instead of the entire year, the 
summer-mean temperature can be trivially separated into the annual 
mean and a departure as: 

Tm �Ts
m¼ Ta

mþ
�
Ts

m � Ta
m

�
;

¼ Ta
mþTs

m’: (4)  

where the prime stands for the departure of the summer mean with 
respect to the annual mean. 

The full decomposition can then be obtained by replacing Eq. (4) into 
Eq. (3): 

TXx¼ Ta
mþ Ts

m’þ
DTR

2
þ Tm’ðdxÞ þ

DTR’ðdxÞ

2
: (5) 

The first term in the right-hand side denotes the local annual-mean 
temperature while the second term informs about local anomalies 
arising from the consideration of summer mean instead of annual mean 
values (i.e., seasonality effect). The third term describes the effect of the 
local summer mean DTR. The last two terms denote the daily tempera-
ture anomaly on the day of the extreme as compared with the local 
summer mean and includes a component coming from the anomalous 
DTR of that day (DTR’ðdxÞ

2 ). The distinction between the anomaly compared 
with the mean DTR or with the mean daily temperature is of little in-
terest at this stage and thus we will generally present the combined ef-
fect of these last two terms (i.e., TX’ðdxÞ ¼ TX’x ¼ T’mðdxÞþ

DTR’ðdxÞ
2 ): 

TXx¼ Ta
mþ Ts

m’þ
DTR

2
þ TX’x: (6) 

For illustration purposes, Fig. 1 shows daily maximum temperature 
in two grid points located near Paris in France (left panels) and Montr�eal 
in Canada (right panels) according to HadGHCND data. Plots also show 
the annual, seasonal and DTR long-term mean values together with the 
resulting extreme anomaly term. A yearly and weekly window centred 
in the absolute maximum of the 30-years period (TXx; large red dot) is 
shown in middle and bottom panels respectively. 

Future changes in the absolute maximum of the 30-year maximum 
temperature can then be expressed as 

ΔTXx¼TXFUT
x � TXHIST

x ¼ΔTa
mþΔTs

m’þΔ
DTR

2
þ ΔTX’x (7)  

where HIST and FUT denote temperature terms evaluated using some 
historical and future periods respectively. 

2.3. Regridding extremes 

As discussed by Chen and Knutson (2008), the interpretation of 
model output as areal mean values (instead of grid-point estimations) 
implies that observed and simulated datasets with different horizontal 
resolutions provide information at different spatial scales. Conse-
quently, in the evaluation process, the direct comparison between ex-
tremes from datasets with different resolutions is ambiguous because it 
is generally not possible to determine whether differences are related to 
differences in the spatial scale or in the quality of the dataset. This issue 
is commonly approached by postprocessing (remapping) observed and 
simulated output so all data provide information at (approximately) the 
same spatial scale. 

In this paper, before applying the temperature decomposition, we 
have regridded all observed and simulated daily minimum and 
maximum temperatures onto the coarsest resolution grid mesh (i.e., the 
2.5∘ x 3.75∘ HadGHCND grid) using a conservative mapping technique. 
For simulated and reanalysis data, only grid points covered by land in at 
least 90% of the total surface are considered in the regridding process. 
This remapping ensures that information at spatial scales finer than 
HadGHCND’s grid spacing is filtered out. It should be noted, however, 

A. Di Luca et al.                                                                                                                                                                                                                                



Weather and Climate Extremes 28 (2020) 100255

4

that such a methodology does not alter the influence that fine scales 
could have had on scales larger than the HadGHCND grid. Once the 
remapping has been applied, the temperature decomposition as 
described by Eq. (6) was applied to observed and simulated regridded 
datasets. Moreover, a mask that accounts for observed missing data is 
applied to all observed and simulated datasets to ensure that spatial 
averages across datasets represent the same areas. The time-invariant 
mask was created by discarding grid points with 20% or more missing 
daily values over the full period when considering the HadGHCND 
dataset. 

In order to use data from the whole globe at a higher resolution, 
future changes are presented using a common, regular 2∘ by 2∘ grid 
mesh. In this case the remapping was performed using a simple nearest 
neighbour approach thus ensuring that each dataset retains the original 
information. Only grid points with at least 90% of land and with at least 

16 models are considered in the analysis. 
Regardless of the output grid used, global mean values were calcu-

lated using land grid points by weighting values by the area of grid 
boxes. Also, absolute maximum temperatures were calculated assuming 
that they occur during the summer season thus considering JJA and DJF 
months for the northern and southern hemispheres respectively. It 
should be noted that in some tropical or monsoonal regions, the calendar 
summer season might not correspond to the warmest season of the year. 
This issue is discussed in detail in Section 3.5. 

3. Results 

3.1. Observed hot extremes 

Fig. 2 shows the absolute maximum temperature (Fig. 2a) and 

Fig. 1. Daily time series of maximum temperature (red) from the HadGHCND dataset in two individual grid points: one near Paris, France (left panels) and another 
near Montr�eal, Canada (right panels). Top panels show the full period 1971–2000, middle panels show the year when the absolute maximum occurred and bottom 
panels show a 19-day window centred on the day when the absolute maximum occurred. The absolute maximum (TXx) is denoted with a large red dot. The annual 
mean temperature (Ta

m), seasonal mean temperature (Ts
m) and mean diurnal temperature range (DTR

2 ) are also indicated in the plots. Bottom panels also include the 
contribution from each term to the absolute maximum temperature. 
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decomposition terms (Fig. 2b–e) as estimated using the HadGHCND 
data. Figs. S1, S2, S3, S4 and S5 in the Supplementary Information show 
decomposition terms for BEST, CPC, ERAI, ERA5 and CRU-TS321 (only 
for long-term mean terms) respectively. 

Absolute temperature extremes (Fig. 2a) vary between about 13 ∘C in 
some grid points in Greenland to nearly 48 ∘C in the hottest areas such as 
Australia, northern Africa and Middle East with a land-only global mean 
of 35.1 ∘C. According to the HadGHCND dataset, the local annual mean 
temperature (Fig. 2b) varies between about 28 ∘C in low latitudes and 
� 19 ∘C in high latitudes with a land-only globally averaged annual mean 
temperature of 8.7 ∘C (note missing data in large tropical areas). Dif-
ferences between summer and annual mean temperatures (Fig. 2c) are 
largest at high latitudes over the Northern Hemisphere where they can 
attain 25 ∘C and smallest in the subtropics where they are close to 0 ∘C. 
The globally averaged difference between summer and annual mean 
values is 11.1 ∘C suggesting a large contribution from the seasonal cycle 
to the annual hot extremes. Similarly, temperature variations through 
the day (Fig. 2d) contribute to temperature hot extremes by between 2 
and 10 ∘C with the largest values occurring over dry regions such as 
southwest North America, Patagonia and southern Australia. Globally 
averaged the diurnal temperature range term (DTR

2 ) contributes by 5.9 ∘C 
to hot extremes. 

Finally, the local daily extreme temperature anomaly (Fig. 2e) varies 
between about 2 ∘C in some grid points in the tropics and about 17 ∘C in 
some continental grid points at high latitudes showing a general increase 
towards higher latitudes. According to the HadGHCND dataset, globally 
averaged the local daily extreme temperature anomaly is 9.4 ∘C, thus of 

similar magnitude to the seasonal cycle term. 
Fig. 3 shows the observational uncertainty range in each grid point 

for daily extreme temperatures (Fig. 3a) and the four decomposition 
terms (Fig. 3b–e). The observational uncertainty range is lower than 3 ∘C 
in several midlatitude regions including North America, Europe, Central 
Asia and Australia while the largest values (about 20 ∘C) occur over 
poorly sampled regions such as Greenland, northern Africa, Himalayas 
and central Andes. Analysing the observational uncertainty according to 
the four decomposition terms shows that the largest contributions are 
given by the daily extreme anomaly followed by the annual mean and 
the diurnal temperature range terms. Uncertainties in the annual mean 
term are largest in areas with important topographic forcings such as the 
Himalayas, Greenland and central Andes while the daily extreme 
anomaly term shows a more spatially homogeneous pattern with less 
topographic dependence and values generally increasing towards higher 
latitudes. 

Fig. 4a shows the globally averaged observational range for different 
subsets of observations created by removing, one at a time, individual 
observed datasets. Fig. 4a shows that not all datasets contribute simi-
larly to the observational range and that this contribution also depends 
on the specific term being considered. For example, the observational 
uncertainty of the 30-year absolute maximum and the annual mean 
terms is largest when including the HadGHCND dataset that explains 
nearly 25 and 35% of the full range for those two terms respectively (see 
normalised observational range in Fig. 4b). For the other terms, 
including the summer mean anomaly, the mean DTR and the mean 
extreme anomaly terms, the observational uncertainty is largest when 

Fig. 2. (a) Absolute maximum temperature (TXx), (b) local annual mean temperature (Ta
m), (c) summer mean anomaly (Ts

m), (d) summer diurnal temperature range 
(DTR

2 ) and (e) daily extreme anomaly (TX’x) from the HadGHCND dataset. See Eq. (6) for details on the decomposition. For each plot, the (area-weighted) global 
average is shown in the bottom-right corner. Note that the range of values plotted is different for different terms. 
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including the BEST dataset that increases the full range by about 25%. At 
least for the mean DTR term, this seems to arise from some problem in 
the BEST dataset that shows negligible spatial variability compared to 
other observed datasets (see Fig. S1g). 

It should be noted that hot extremes can occur on different days in 
the various observation-based datasets. Fig. S6 a in the Supplementary 
Information shows the percentage of events that occur at the same time 
for each pair of observation-based datasets. Extreme events are assumed 

to occur at the same time in two given datasets when the day of the 
extreme in one dataset occurs within (less or equal than) 3 days in the 
other dataset. Results show that, globally averaged, the percentage of 
events that are the same in two given datasets vary between 26 and 55% 
with the largest matching rates found between ERAI and ERA5 rean-
alyses and lowest between BEST and ERAI datasets. Fig. S6b presents the 
number of observation pairs that were matched in each grid point (the 
maximum is 10) showing that the largest agreement across datasets are 

Fig. 3. Observational uncertainty range for the absolute maximum temperature (a) and the four decomposition terms (b–e) as presented in Eq. (6). The observational 
uncertainty range was calculated in each grid point as the largest difference between any two observation-based datasets, including the reanalyses. For each plot, the 
(area-weighted) global average is shown in the bottom-right corner. 

Fig. 4. a) Globally averaged observational uncertainty range for various subsets of observation-based datasets. b) Same as a) but normalised by the full range. The 
‘‘all” subset provides the range when using all six observed datasets. The other subsets provide the range when excluding, one at a time, each of the six 
observed datasets. 
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found over midlatitude regions while low latitude regions usually show 
low agreement. Further investigation is needed to better understand 
these values and their spatial distribution. 

3.2. CMIP5 biases 

Fig. 5 shows CMIP5 ensemble mean biases compared with the 
HadGHCND dataset for absolute maximum temperatures (Fig. 5a) and 
individual decomposition terms (Fig. 5b–e). The stippling denotes those 
grid points where at least 80% of the models agree on the sign of the 
bias. A measure of the global model’s agreement on the sign of the bias is 
given by the land area agreement (LAA) parameters. LAA provides the 
proportion of land area where models agree in a positive or a negative 
bias respectively thus indicating whether models share similar system-
atic errors. 

Multi-model mean biases in absolute maximum temperatures vary 
between � 19 (in Greenland) and 17 ∘C (in northern Africa) with a 
globally averaged absolute maximum temperature bias of 1.4 ∘C when 
comparing with HadGHCND. As shown in Fig. 3, the observational un-
certainty range in those two regions is particularly large (about 20 ∘C) 
suggesting caution when interpreting these biases. The first column in 
Table 1 shows global mean values of absolute maximum temperatures 
for the multi-model mean and observed datasets. The resulting multi- 
model mean biases compared to BEST, CPC, ERAI and ERA5 are 2.6, 
0.7, 1.9 and 2.4 ∘C respectively showing that, despite observational 
uncertainties being large over specific regions, all observed datasets 
agree on a warm bias of hot extremes at the global scale. 

The CMIP5 multi-model mean bias of 1.9 ∘C estimated here using 
ERAI data is much larger than the 0.5 ∘C bias reported by Kharin et al. 
(2013). Besides the use of a different base period (1981–2000 Vs. 
1986–2005), there are a few reasons for this discrepancy. The main one 

is that in this paper the mean bias is calculated using only land grid 
points while Kharin et al. (2013) also included ocean grid points. Biases 
over the ocean appear to be much smaller thus substantially lowering 
the globally averaged bias. Second, we further mask areas where the 
HadGHCND data is not available thus excluding large regions over South 
America, Africa and India. When including these areas, the global mean 
bias compared with ERAI decreases by about 0.5 ∘C (from 1.9 to 1.4 ∘C). 
Third, a difference of 0.4 ∘C is explained by the regridding method used 
here to address the scale mismatch between models and observed 
products. Specifically, the regridding of ERAI from its original resolution 
to the HadGHCND grid using the conservative mapping technique re-
sults in hot temperature extremes being 0.4 ∘C lower when averaged 
over land areas. 

Fig. 5b–e shows CMIP5 biases compared with HadGHCND for the 

Fig. 5. CMIP5 ensemble mean biases for the absolute maximum temperature (a) and the four decomposition terms as presented in Eq. (6). Robust biases (stippled 
with small black dots) were identified when at least 80% of the models agree on the sign of the bias. For each plot, the proportion of land area showing positive and 
negative biases for at least 80% of the models is denoted by the LAA values in the bottom-right corner. Note that the range of values plotted in panel a) is different 
from panels b–e). 

Table 1 
Globally averaged (weighted by area) values of the 30-year maximum absolute 
temperature (TXx) and the four decomposition terms (see Eq. (6)) for the CMIP5 
multi-model mean (MMM) and observation-based datasets. The global mean is 
calculated using only land grid points and a mask that excludes grid points with 
substantial missing observations. Bolded values denote those terms for which 
the MMM is outside the observational uncertainty range.   

TXx  Ta
m  Ts

m’  DTR
2  

TXx’  

MMM 36.5 7.1 11.9 5.3 12.2 
HadGHCND 35.1 8.7 11.1 5.9 9.4 
BEST 33.9 8.0 11.6 5.7 8.5 
CPC 35.8 8.1 11.2 5.5 11.0 
ERAI 34.6 7.9 11.1 5.0 10.5 
ERA5 34.1 7.5 11.3 5.0 10.3 
CRU-TS321 n/a 7.6 11.3 5.8 n/a  
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four decomposition terms (see Eq. (6)). The consideration of the various 
decomposition terms shows that the overall positive bias in absolute 
maximum temperatures is the net result of both positive and negative 
biases at different temporal scales. Specifically (see Table 1), the CMIP5 
ensemble shows a negative bias in the globally averaged annual mean 
temperature compared to all observation-based datasets (� 1.7, � 0.8, 
� 0.9, � 0.8, � 0.4 and � 0.5 ∘C for the HadGHCND, BEST, CPC, ERAI, 
ERA5 and CRU-TS321 datasets respectively) and in the globally aver-
aged mean DTR compared to all but the two reanalyses (� 0.6, � 0.4, 
� 0.2, 0.3, 0.3 and � 0.5 ∘C for HadGHCND, BEST, CPC, ERAI, ERA5 and 
CRU-TS321). While overall negative biases are observed between the 
CMIP5 multi-model mean and all observed datasets, the magnitude of 
these biases varies significantly in specific regions. For example, the 
well-known CMIP5 underestimation of annual mean temperatures over 
the Tibetan Plateau (Su et al., 2013; Chen et al., 2017) appears to be 
much stronger when compared with HadGHCND (� 6.8 ∘C, areal mean 
over 22∘-40∘N and 68∘-106∘E) than with CRU-TS321 (� 2.9 ∘C) or ERAI 
(� 1.6 ∘C). The higher near-surface temperatures in CRU-TS321 
compared with ERAI over the Tibetan Plateau are in agreement with 
values reported by Chen et al. (2017). Similarly, the globally averaged 
underestimation of DTR by CMIP5 models has been reported and dis-
cussed in more detail by Lindvall and Svensson (2015). 

The CMIP5 ensemble mean shows warm biases compared to all 
observed datasets when considering the globally averaged summer- 
mean term (0.8, 0.3, 0.7, 0.8, 0.6 and 0.6 for HadGHCND, BEST, CPC, 
ERAI, ERA5 and CRU-TS321; see Table 1) and the globally averaged 
local daily extreme anomalies (2.8, 3.7, 1.2, 1.7 and 1.9 ∘C for 
HadGHCND, BEST, CPC, ERAI and ERA5). In the case of the local daily 
extreme anomaly, CMIP5 warm biases are not only evident at the global 
scale (see last column in Table 1) but are spatially widespread and robust 
across the ensemble. For example, the proportion of land area where 
models agree on a positive bias is 69, 87, 36, 40 and 48% for 
HadGHCND, BEST, CPC, ERAI and ERA5 datasets respectively. While 
the overall positive bias in the extreme anomaly term seems to be robust 
across regions and models, there are still some significant differences 
among observations. BEST and HadGHCND show a global mean value of 
the extreme temperature anomaly about 2.0 ∘C lower than the CPC 
dataset (see Table 1). Gross et al. (2018) reported that daily fields in the 
HadGHCND dataset could be over-smoothed due to the use of a rela-
tively long radius in the interpolation process thus suggesting that 
HadGHCND might be underestimating the extreme temperature anom-
aly although it is unclear to what extent. The warm bias in the extreme 
anomaly term is even more robust and widespread when considering 
less extreme quantities than the 30-year absolute maximum temperature 
as shown in Fig. S7 for the 99th (left panels) and 95th (right panels) 
percentiles presumable due to a lesser influence of natural variability. 

Fig. 6 shows mean differences between HadGHCND and observed 
and simulated datasets for each decomposition term over four distinct 
regions. In three of the four regions, the multi-model mean shows 
agreement regarding positive biases in daily temperature extreme 
anomalies with at least 25 out of 31 models showing a positive bias, 
which leads to a robust bias in the absolute temperature extremes in 
southeast South America and western Europe. In central Asia and 
eastern US, biases in the absolute maximum temperature are usually the 
result of a compensation between a negative bias in the annual mean 
term or the DTR and a large positive bias in the extreme anomaly term. 
Such compensations are present in other regions and will be discussed in 
more detail in the following section. 

3.3. CMIP5 absolute and additive errors 

The use of the mean bias to describe the performance of individual 
CMIP5 models to simulate temperature extremes can be misleading due 
to the compensation of errors of different sign arising from the decom-
position terms. The decomposition can then be used to define a new 
estimator of the error, denoted here as the additive error, that explicitly 

accounts for individual errors as follows: 

aesum¼ ae
�
Ta

m

�
þ ae

�
Ts

m’
�
þ ae

�
DTR

2

�

þ aeðTX’xÞ; (8)  

where ae denotes the absolute error and aesum the sum of the individual 
absolute errors. Defined in this way, aesum>¼aeðTXxÞ and aesum ¼

aeðTXxÞ if and only if at least three out of the four individual errors are 
zero. According to this error definition, a model is said to be right for the 
right reasons whenever the additive error aesum is small, implying that 
all individual errors are small. 

Fig. 7 shows the additive error aesum as a function of the absolute 
error aeðTXxÞ for CMIP5 models (blue dots) and observed datasets (red 
dots) as compared to the HadGHCND product. Results are shown for the 
same four regions as in Fig. 5. The horizontal and vertical dashed lines 
represent the largest aesum and aeðTXxÞ errors between HadGHCND and 
any other observed dataset thus providing information on the observa-
tional uncertainty. The four quadrants delimited by the horizontal and 
vertical dashed lines can then be used to distinguish model’s errors as 
follow:  

1. Bottom-left quadrant: model errors are within the observational 
uncertainty  

2. Top-left quadrant: model individual error (aeðTXxÞ) is within the 
observational uncertainty  

3. Bottom-right quadrant: model additive error (aesum) is within the 
observational uncertainty  

4. Top-right quadrant: model errors are outside the observational 
uncertainty 

Fig. 7 shows that in all regions there are some models that lie close to 
the one-to-one line meaning that, for those models, the additive error is 
largely driven by the error in a single term (usually the error in the 
extreme anomaly). Fig. 7 shows that the observational uncertainty is 
relatively small in eastern US, western Europe and southeast South 
America with the additive error between HadGHCND and other 
observed datasets lower than 4 ∘C. In contrast, the additive error attains 
6 ∘C in central Asia. The number of models within the observational 
uncertainty region varies between 6 out of 31 in western Europe to 22 
out of 31 in central Asia when considering the absolute error of the 
extremes (aeðTXxÞ). However, when considering the additive error 
(aesum), there are at most 9 out of 31 models that lie outside the obser-
vational uncertainty proving that the additive error is a more sensitive 
estimator of the total error compared to the absolute error in tempera-
ture extremes. Moreover, in most regions the observational uncertainty 
range is given by the BEST dataset in part due to large differences in the 
DTR field that shows virtually no spatial variability compared with other 
observed datasets (see Fig. S1g). Fig. S8 shows the same as Fig. 7 but 
discarding the BEST dataset from the observational range. In each of the 
four regions, there are at most 2 models within the observational un-
certainty of the additive error, showing that the additive error becomes 
much more efficient to separate models and observations. 

It should be noted that the observational uncertainty as quantified 
here provides limited information. Small values in the observational 
uncertainty can be interpreted in two different ways. They can arise 
because independent datasets provide a similar estimation of the 
observed temperatures or because dependent datasets (i.e., based on the 
same input data) provide a similar estimation of the observed temper-
atures. The fact that we cannot ruled out the possibility of the underlying 
data being the same across different datasets means that we cannot 
disregard the second interpretation. 

3.4. CMIP5 future changes 

Fig. 8 shows the ensemble mean future changes (2071–2100 minus 
1971–2000) of absolute 30-year maximum temperature (Fig. 8a) and the 
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Fig. 6. Mean biases for CMIP5 models 
and observed datasets as compared to 
the HadGHCND dataset in four regions 
(see Fig. S11 for regions details). For 
each region, the various decomposition 
terms are shown in rows and individual 
model/observations are shown in col-
umns including the CMIP5 multi-model 
mean (MMM) and multi-model median 
(MMD). Datasets are ranked from low to 
high according to the bias in absolute 
maximum temperatures (TXx). Plus 
(circle) signs denote those terms for 
which at least 80% of the models show a 
positive (negative) bias. See Table S1 in 
the Supplementary Information to find 
out which model corresponds to each 
number.   
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four decomposition terms (see Eq. (7)). The stippling denotes grid points 
where at least 80% of the models agree on the direction (sign) of the 
change. In this case, the proportion of land area where models agree in 
the direction of the change is denoted by LAA with the first value for 
positive changes and the second for negative. It should be reminded that 
changes are calculated on a regular 2∘ by 2∘ grid as opposed to the 
HadGHCND grid used in the assessment of biases. 

Averaged across CMIP5 models, future absolute maximum temper-
atures increase by between 0.6 and 8.7 ∘C, depending on the specific 
region considered, with a global mean increase of 5.6 ∘C (see Table 2) 
and at least 80% of the models showing a positive change in all grid 
points (i.e., LAA is 100%). The largest warming rates usually occur over 
midlatitude regions with changes consistently larger than 7 ∘C in central 
and east North America and Europe. Warming rates over 7 ∘C are also 
projected over tropical South America. Over land areas the lowest 
warming rates are projected over Greenland, Antarctica, Patagonia and 
most of Australia where changes are usually below 4.5 ∘C. 

The largest overall contribution to the increases in absolute 
maximum temperatures is given by the annual-mean term that shows a 
globally averaged future change of 5.2 ∘C for the multi-model mean 
(Fig. 8b). This value is somewhat larger than the 4.8 ∘C value reported by 
Collins et al. (2013) using the same scenario (RCP8.5) presumably 
because they used a different number of models (39 instead of 32) and 
different present and future periods (1986–2005 and 1981–2100). 
Future changes in annual mean temperatures show a strong regional 
variation with values attaining 10 ∘C over the Arctic region and only 
about 2.5 ∘C in eastern Patagonia. 

While changes in globally averaged annual mean temperatures are 
nearly as large as the globally averaged changes in absolute maximum 

temperatures, in order to explain regional differences, it is necessary to 
include the contribution from other terms. Fig. 8c shows that only in 
three land areas future changes in summer season will be larger than the 
annual changes: a large region around the Mediterranean Sea, a belt that 
extends through central US and a region that includes most of Argentina 
and central Chile. On the contrary, summer temperatures in high lati-
tudes of the Northern Hemisphere show smaller warming rates than the 
annual mean value due to the dominant role played by polar amplifi-
cation during the cold season (e.g. Collins et al., 2013). 

Widespread and robust changes in DTR are only observed in a few 
regions. Over western Europe, changes in DTR contribute to increases in 
daily maximum temperatures. Over southern Sahara, southern Arabian 
Peninsula, Greenland and Antarctica, DTR changes contribute to de-
creases in daily maximum temperatures. In central US some positive 
contributions are also observed although the agreement between models 
is relatively low. 

Future changes in the local daily extreme anomaly are often positive 
with a global mean value of 0.6 ∘C and local values attaining nearly 4 ∘C 
over the South American Monsoon (SAM) region and � 3 ∘C over 
Greenland and Antarctica. At the global scale only 18% of grid points 
show positive changes that are robust across models and most of these 
grid points are located in land tropical areas. As found for the bias fields, 
future changes obtained using the 99th or the 95th percentiles (Fig. S9) 
are qualitatively very similar to those found when using the 30-year 
absolute maximum temperatures. There is, however, a clear increase 
in the robustness of the changes as less extreme metrics are considered. 
For example, the fraction of the area with robust positive changes in-
crease from 18% for the 30-year absolute maximum temperature to 26 
and 31% for the 99th and 95th percentiles respectively. 

Fig. 7. Scatter plot of the sum of absolute errors (aesum; see Eq. (8)) and the absolute error of the absolute maximum temperature (aeðTXxÞ) for individual CMIP5 
models (blue circles) and observations (red circles) compared to the HadGHCND dataset. MMM and MMD denote the multi-model mean and multi-model median 
respectively. Red dashed lines show the largest difference between HadGHCND and other observations and thus indicate the observational uncertainty range. See 
Table S1 in the Supplementary Information to find out which model corresponds to each number. 
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Fig. 9 shows regional mean future changes for each decomposition 
term over four distinct regions: eastern US, western Europe, Amazon and 
eastern Australia (see Fig. S10 details on regions). In western Europe, all 
decomposition terms show positive and robust changes showing that the 
total change in absolute maximum temperatures result from the super-
position of positive changes at various temporal scales. A similar 
behaviour is observed over eastern US. Over the South American 
Monsoon region, the large increases in hot extremes come from a very 
large contribution from the extreme anomaly term. Over eastern 
Australia, future changes are mostly explained by changes in the annual 
mean with negligible contributions from other terms. 

3.5. Stationarity assumption and artifacts of the decomposition 

This analysis would not be complete without a discussion of some 
fundamental hypothesis that underpins this development. In the deri-
vation of Eq. (5), we have made two important assumptions that relate 
to the long-term stationarity of the climate. First, Eq. (5) assumes that 
long-term mean temperatures associated with daily extreme 

temperatures can be approximated using long-term mean summer (DJF 
or JJA) values. However, in areas where hot extremes do not occur 
systematically during summer (e.g., tropical and monsoonal regions) or 
areas with a large annual cycle (e.g., high-latitude regions), the summer 
mean might not be a good estimation of the mean temperature at the 
moment when daily extremes occur. In turn, since the sum in the right- 
hand side of Eq. (5) has to be equal to the extreme on the left-hand side, 
the incorrect estimation of the mean component will directly translate in 
an incorrect estimation of the extreme anomaly term. To quantify the 
effect of using the actual long-term mean temperature of the calendar 
day of the extreme, we have first calculated the mean temperature for 
each day using the 30-year period (i.e., 30 values) and a 10-day window 
centred upon the day of interest (Zhang et al., 2011). The resulting 
temperature extreme anomaly estimated using the calendar-day mean is 
smaller than the one estimated using the seasonal mean nearly every-
where with a global averaged difference of 1.2 ∘C (see left panels in 
Fig. S10 in the Supplementary Information). The largest differences 
between both estimations occur over India (monsoonal region), 
Antarctica and Siberia (large seasonality regions) where differences 
attain 3.0 ∘C. Fig. 10a) shows the resulting future change of the extreme 
anomaly term when using the calendar-day mean temperature. It shows 
a very similar spatial pattern compared with the change when using the 
seasonal mean (Fig. 8e) but the global average decreases by 0.04 ∘C and 
the percentage of land area where models agree in a significant increase 
decreases from 18 to 10%. 

The second assumption about the stationarity is related to using a 
single value to characterise the full 30-year period without taking into 
account variations within the period. In the context of global warming, 
the use of the 30-year mean temperature to characterise present and 
future periods effectively means that mean temperatures are over-
estimated over the first half of the period and underestimated over the 

Fig. 8. CMIP5 ensemble mean future changes for absolute maximum temperature (a) and the four different decomposition terms (b–e) as presented in Eq. (7). Robust 
future changes (stippled with small black dots) were identified when at least 80% of the models agree on the sign of the change. Black contours denote values larger 
than 7 C∘ in a) and larger than 2 C∘ in b)-e). The proportion of land area showing a positive or a negative change with overall agreement among models are denoted by 
the LAA values in the bottom-right corner. Note that the range of values plotted is different for different terms. 

Table 2 
Globally averaged (weighted by area) values of the 30-year maximum absolute 
temperature (TXx) and the four decomposition terms (see Eq. (6)) for the CMIP5 
multi-model mean (MMM) in the historical period and the future changes. The 
global mean is calculated using only land grid points.   

TXx  Ta;l
m  Ts

m
� DTR

2  
TXx’  

historical 34.0 8.2 9.3 5.0 11.5 
change (C∘) 5.6 5.2 � 0.2 0.0 0.6 
LAA pos. (%)  100 100 18 7 18 
LAA neg. (%)  0 0 28 18 4  
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Fig. 9. Mean future changes for CMIP5 models 
in four regions (see Fig. S11 for regions de-
tails). For each region, the various decompo-
sition terms are shown in rows and individual 
model are shown in columns including the 
multi-model mean (MMM) and median 
(MMD). Datasets are ranked from low to high 
according to the future change in absolute 
maximum temperatures (TXx). Plus (circle) 
signs denote those terms for which at least 
80% of the models show a positive (negative) 
change. See Table S1 in the Supplementary 
Information to find out which model corre-
sponds to each number.   

A. Di Luca et al.                                                                                                                                                                                                                                



Weather and Climate Extremes 28 (2020) 100255

13

second half (see also Fischer and Sch€ar, 2009; Della-Marta et al., 2007). 
This translates into an underestimation of the extreme anomaly term for 
the first half of the period and an overestimation in the second half. In 
addition, since warming rates (i.e. trends) in the RCP8.5 scenario are 
usually stronger at the end of the 21st century compared to the end of 
the 20th century, this trend effect leads to differences in future changes. 

To quantify the trend effect, we have calculated summer mean linear 
trends at each grid point and for each model and period. We have then 
modified the calendar-day mean value by adding or subtracting a 
correction based on the value of the trend and the year when the extreme 
occurred. As found for the calendar correction, the temperature extreme 
anomaly estimated using the new correction is smaller than the one 
estimated using the seasonal mean nearly everywhere with a global 
averaged difference of 1.3 ∘C in the present climate and of 1.6 ∘C in the 
future climate (see right panels in Fig. S10 in the Supplementary In-
formation). Results for the corrected extreme anomaly terms are shown 
in the right panels of Fig. 10. The future change in the extreme anomaly 
term when adjusted for the summer linear trend is still positive when 
averaged over the whole globe (0.2 ∘C) but much smaller than the non- 
adjusted value of 0.5 ∘C. In addition, the percentage of land area where 
models agree in a positive change in the extreme anomaly decreases 
from 10 to 3% when including the linear trend correction on top of the 
calendar-day correction. It should be noted that the trend correction 
applied here is only an approximation of the actual forced trend because 
of the influence of internal variability and the assumption of linearity. 
These effects should be tested more thoroughly in future works. 

Bottom panels in Fig. 10 show the fractional contribution from the 
extreme anomaly term to the total future change in the absolute 
maximum temperature for calendar-day (Fig. 10c) and calendar-day 
plus linear trend (Fig. 10d) calculations. Box plots show the inter-
model median, interquartile range and full range for the different re-
gions shown in Fig. S11. The fraction of the future change in hot 
extremes explained by the extreme anomaly term varies between about 

0.25 in the Scandinavian and South American Monsoon regions to � 0.25 
in Greenland and Antarctica. In the case of the full corrected estimation, 
only 2 regions (South American Monsoon and western Russia), out of the 
17 regions considered, show a positive fraction in at least 80% of the 
CMIP5 ensemble. 

4. Discussion 

This paper addresses the long-standing issue of separating climate 
extreme temperatures according to long-term mean quantities (i.e., slow 
processes) and day-to-day weather variability (i.e., fast processes) 
(Gross et al., 2018; Donat et al., 2016, 2018). With this aim, we intro-
duce a new methodology that describes temperature extremes as the 
superposition of four well known and physically coherent terms that 
include the annual mean temperature, the amplitude of the annual cycle, 
the mean diurnal temperature range and daily temperature extreme 
anomalies. The former three terms are calculated using long-term mean 
quantities and thus belong to the ‘‘mean component’’ while the daily 
temperature extreme anomaly term provides information on the specific 
synoptic and subsynoptic conditions surrounding the occurrence of the 
extreme and thus belong to the ‘‘variability/tail component’’. 

The methodology is applied to address two key aspects of CMIP5 
simulated hot temperature extremes: performance and projected 
changes. The evaluation is performed by taking into account the spatial- 
scale mismatch between the observed and simulated datasets involved 
and the observational uncertainty. This constitutes a novelty regarding 
earlier studies (e.g., Donat et al., 2016; Sillmann et al., 2013; Kharin 
et al., 2013) that performed comparisons between models and obser-
vations without explicitly addressing the spatial-scale mismatch. For 
example, the HadEX2 dataset (Donat et al., 2013b) has been widely used 
to evaluate climate models (e.g., Donat et al., 2016; Alexander and 
Arblaster, 2017; Sillmann et al., 2013) but its adequacy to identify biases 
in simulated extremes is questionable since HadEX2 data represent 

Fig. 10. Top panels show future changes in the daily extreme anomaly term as obtained using (a) the calendar-day mean and (b) the calendar-day mean plus the 
summer linear trend estimations. Bottom panels show multi-model boxplots of the fraction of the future change in the absolute maximum temperature that is 
explained by the extreme anomaly term in several regions (see Fig. S11 for regions details). 
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grid-point (i.e., station) instead of areal-mean estimations. This issue has 
been acknowledged and discussed in many papers (e.g., Alexander and 
Arblaster, 2017; Sillmann et al., 2013). 

The comparison of hot extremes from different observation-based 
datasets shows that the magnitude of the observational uncertainty 
strongly depends on the region being considered. In areas with relatively 
good station coverage such as Europe, North America and Australia, the 
observational uncertainty range is usually lower than 3 ∘C. However, in 
areas with more scarce coverage and/or characterised by complex 
topography the observational uncertainty range can be very large, 
attaining 20 ∘C in Greenland, northern Africa, Himalayas and central 
Andes. Decomposition terms show that the largest differences across 
observations arise from the representation of the extreme anomaly term 
and the annual mean term particularly in mountainous regions where a 
high density of stations is needed to well characterise the climatology. 

While observational uncertainties can be substantial, the analysis of 
biases of different decomposition terms shows a remarkably consistent 
picture where CMIP5 models exhibit a widespread warm bias in the 
simulation of daily extreme anomalies that is often (regionally depen-
dent) compensated by a cold bias in long-term mean terms. This finding 
is valid over most land areas of the globe and appears to be independent 
of observations. The superposition of a warm bias in the extreme 
anomaly term and (generally) a cold bias in the mean terms results in 
absolute hot extreme temperatures being overestimated although 
exhibiting important regional variations. While this general over-
estimation pattern has been reported before (Donat et al., 2016; Sill-
mann et al., 2013; Kharin et al., 2013), its partition according to 
different terms provides new insights on the performance of the models. 

We define a new error estimator, called the additive error, as the sum 
of absolute errors in individual decomposition terms thus avoiding, to 
some extent, the error’s compensation issue (see Palmer, 2016). The 
additive error provides a more sensitive characterisation of the total 
error in temperature extremes compared with the commonly used bias 
or absolute error. The additive error appears to be much more efficient 
at separating observation-based from simulated datasets proving to give 
a better characterisation of the overall performance of models. For 
example, at the global scale, the additive error of 30 out of 31 CMIP5 
models is larger than the observational uncertainty while only 15 out of 
31 models lie outside the observational uncertainty when the traditional 
absolute error is used. Palmer (2016) introduced the idea of ‘‘climatic 
Turing test’’ to assess whether the origin of a given dataset, that is 
whether the data was produced using models or was obtained from 
observations, could be determined only by questioning the data without 
any a priori knowledge of its origin. In this sense, it seems that the ad-
ditive error is a much more difficult ‘‘climatic Turing test’’ for models to 
pass than the more classic absolute error suggesting that the additive 
error could be used more widely to characterise model’s performance. 

The application of the methodology to decompose future changes in 
hot temperature extremes provides insights on the sources of the 
changes and allows to identify regions that might undergo similar 
changes but due to different mechanisms. Western Europe belongs to a 
situation where very large increases in hot extremes are projected due to 
the superposition of positive changes in all decomposition terms: the 
annual mean, summer anomaly, the diurnal temperature range and the 
daily extreme anomaly term. On the other hand, tropical South America 
emerges as a future hot spot for extreme temperature increases due to 
changes in the annual mean term but mostly due to changes in the daily 
extreme anomaly term which shows the most robust and some of the 
largest values in the globe. The high contribution from the extreme 
anomaly term (about 20% of the change in the full extreme) makes 
tropical South America one of the most sensitive regions in the world in 
terms of hot extremes. There are also a few regions such as central Asia, 
Greenland and Antarctica where the extreme anomaly term is expected 
to decrease. 

Our results show that the separation of future changes in extremes 
according to a mean component and variability/tails is very sensitive to 

the specific way the mean component is defined including assumptions 
about stationarity. We found that when properly estimating the various 
decomposition terms, most regions of the globe show no robust changes 
in the extreme anomaly term suggesting little influence of variability/ 
tail changes in future extremes. 

The metric used here to characterise hot extremes is the most 
extreme possible using a 30-year period (at least at daily time scales): 
the absolute maximum temperature. The consideration of more mod-
erate extremes (i.e., 99th and 95th percentiles) shows qualitatively 
similar results both for the evaluation part and the future changes. There 
are, however, some quantitative differences. First, the uncertainties on 
the local daily extreme anomaly are reduced when considering more 
moderate extremes due to a substantial reduction in the influence of 
natural variability. This leads to a larger proportion of land area 
showing model agreement in the changes. For example, while only 2 (1) 
% of land area show a positive (negative) change in agreement across 
models for the absolute maximum temperature, the proportion increase 
to 8 (5) % and 12 (7) % when considering the 99th and 95th percentiles. 

5. Conclusions 

A simple and physically meaningful decomposition was used to 
separate hot extremes and their changes as the superposition of four well 
known physical terms that include information on the annual mean 
temperature, the amplitude of the annual cycle, the diurnal temperature 
range and the local temperature anomaly on the day of the extreme. Our 
results clearly show that the general warm bias in hot extremes as 
simulated by CMIP5 models results from a robust and widespread bias in 
the extreme anomaly term, even at expenses of a (general) cold bias in 
the long-term mean component. Furthermore, individual errors of 
decomposition terms were used to define a new error metric that allows 
to fix to some extent the issue of error compensation and whether 
simulated hot extremes were ‘‘right for the right reasons’’. 

The decomposition was also used to show that future changes in hot 
temperature extremes as projected using CMIP5 models are dominated 
by changes in long-term mean terms. This is valid over most of the globe 
including hot spots of extreme temperature changes such as western 
Europe and eastern US where changes in the variability/tail of daily 
temperature distribution contribute by at most 10% to the total change 
in hot extremes. The largest and most robust future changes in the 
variability/tail of the daily temperature distribution are projected to 
occur in tropical South America (South American Monsoon and Amazon 
regions) where median contributions attain nearly 20% of the total 
change. Other regions where changes in the variability/tail are impor-
tant are Scandinavia and western Russia where changes tend to increase 
long-term mean changes and Greenland and Antarctica where changes 
tend to decrease long-term mean changes. It might appear paradoxical 
but a key implication of the finding above is that, in most regions, to 
understand future changes in hot extremes we need to focus on the 
seasonality and regional signature of long-term mean changes. 

We believe that the decomposition presented here can help to better 
characterise model’s overall performance and future projections when 
extending the analysis to other extremes (e.g., cold extremes) and other 
seasons. Ultimately, however, our confidence on the projected future 
changes relies on the understanding of the physical mechanisms behind 
the projected changes. With this aim, perhaps the decomposition could 
be applied to some of the key variables driving temperature changes (e. 
g., sensible and latent heat, temperature advection) in order to shed light 
on the physical sources behind the changes. 
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